Diao Songhui, Chen Pingjun, Showkatian Eman, Bandyopadhyay Rukhmini, Rojas Frank R, Zhu Bo, Hong Lingzhi, Aminu Muhammad, Saad Maliazurina B, Salehjahromi Morteza, Muneer Amgad, Sujit Sheeba J, Behrens Carmen, Gibbons Don L, Heymach John V, Kalhor Neda, Wistuba Ignacio I, Solis Soto Luisa M, Zhang Jianjun, Qin Wenjian, Wu Jia
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China.
Cancers (Basel). 2023 Oct 1;15(19):4824. doi: 10.3390/cancers15194824.
Histopathologic whole-slide images (WSI) are generally considered the gold standard for cancer diagnosis and prognosis. Survival prediction based on WSI has recently attracted substantial attention. Nevertheless, it remains a central challenge owing to the inherent difficulties of predicting patient prognosis and effectively extracting informative survival-specific representations from WSI with highly compounded gigapixels. In this study, we present a fully automated cellular-level dual global fusion pipeline for survival prediction. Specifically, the proposed method first describes the composition of different cell populations on WSI. Then, it generates dimension-reduced WSI-embedded maps, allowing for efficient investigation of the tumor microenvironment. In addition, we introduce a novel dual global fusion network to incorporate global and inter-patch features of cell distribution, which enables the sufficient fusion of different types and locations of cells. We further validate the proposed pipeline using The Cancer Genome Atlas lung adenocarcinoma dataset. Our model achieves a C-index of 0.675 (±0.05) in the five-fold cross-validation setting and surpasses comparable methods. Further, we extensively analyze embedded map features and survival probabilities. These experimental results manifest the potential of our proposed pipeline for applications using WSI in lung adenocarcinoma and other malignancies.
组织病理学全切片图像(WSI)通常被认为是癌症诊断和预后评估的金标准。基于WSI的生存预测最近受到了广泛关注。然而,由于预测患者预后存在固有困难,以及从具有高度复合千兆像素的WSI中有效提取信息丰富的生存特异性特征仍然是一个核心挑战。在本研究中,我们提出了一种用于生存预测的全自动细胞级双全局融合管道。具体而言,所提出的方法首先描述WSI上不同细胞群体的组成。然后,它生成降维的WSI嵌入图,以便对肿瘤微环境进行有效研究。此外,我们引入了一种新颖的双全局融合网络,以整合细胞分布的全局和补丁间特征,从而实现不同类型和位置细胞的充分融合。我们使用癌症基因组图谱肺腺癌数据集进一步验证了所提出的管道。我们的模型在五折交叉验证设置中实现了0.675(±0.05)的C指数,并超过了可比方法。此外,我们广泛分析了嵌入图特征和生存概率。这些实验结果表明了我们所提出的管道在肺腺癌和其他恶性肿瘤中使用WSI进行应用的潜力。