Suppr超能文献

基于机器学习的放射组学可在对比增强和非增强胸部 CT 上识别心外膜脂肪中的心房颤动。

Machine-learning-based radiomics identifies atrial fibrillation on the epicardial fat in contrast-enhanced and non-enhanced chest CT.

机构信息

Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Siemens Healthineers Ltd., Zhouzhu Rd.278, Shanghai, China.

出版信息

Br J Radiol. 2022 Jul 1;95(1135):20211274. doi: 10.1259/bjr.20211274. Epub 2022 Apr 19.

Abstract

OBJECTIVE

The purpose is to establish and validate a machine-learning-derived radiomics approach to determine the existence of atrial fibrillation (AF) by analyzing epicardial adipose tissue (EAT) in CT images.

METHODS

Patients with AF based on electrocardiographic tracing who underwent contrast-enhanced ( = 200) or non-enhanced ( = 300) chest CT scans were analyzed retrospectively. After EAT segmentation and radiomics feature extraction, the segmented EAT yielded 1691 radiomics features. The most contributive features to AF were selected by the Boruta algorithm and machine-learning-based random forest algorithm, and combined to construct a radiomics signature (EAT-score). Multivariate logistic regression was used to build clinical factor and nested models.

RESULTS

In the test cohort of contrast-enhanced scanning ( = 60/200), the AUC of EAT-score for identifying patients with AF was 0.92 (95%CI: 0.84-1.00), higher than 0.71 (0.58-0.85) of the clinical factor model (total cholesterol and body mass index) (DeLong's = 0.01), and higher than 0.73 (0.61-0.86) of the EAT volume model ( = 0.01). In the test cohort of non-enhanced scanning ( = 100/300), the AUC of EAT-score was 0.85 (0.77-0.92), higher than that of the CT attenuation model ( < 0.001). The two nested models (EAT-score+volume and EAT-score+volume+clinical factors) for contrast-enhanced scan and one (EAT-score+CT attenuation) for non-enhanced scan showed similar AUCs with that of EAT-score (all > 0.05).

CONCLUSION

EAT-score generated by machine-learning-based radiomics achieved high performance in identifying patients with AF.

ADVANCES IN KNOWLEDGE

A radiomics analysis based on machine learning allows for the identification of AF on the EAT in contrast-enhanced and non-enhanced chest CT.

摘要

目的

通过分析心脏外膜脂肪组织(EAT)在 CT 图像中的存在,建立并验证一种基于机器学习的放射组学方法来确定心房颤动(AF)的存在。

方法

对根据心电图描记进行对比增强(=200)或非增强(=300)胸部 CT 扫描的 AF 患者进行回顾性分析。在 EAT 分割和放射组学特征提取后,分割的 EAT 产生了 1691 个放射组学特征。Boruta 算法和基于机器学习的随机森林算法选择对 AF 最有贡献的特征,并将其组合构建放射组学特征(EAT 评分)。多元逻辑回归用于构建临床因素和嵌套模型。

结果

在对比增强扫描的测试队列(=60/200)中,EAT 评分识别 AF 患者的 AUC 为 0.92(95%CI:0.84-1.00),高于临床因素模型(总胆固醇和体重指数)的 0.71(0.58-0.85)(DeLong's =0.01),也高于 EAT 体积模型(=0.01)的 0.73(0.61-0.86)。在非增强扫描的测试队列(=100/300)中,EAT 评分的 AUC 为 0.85(0.77-0.92),高于 CT 衰减模型(<0.001)。对比增强扫描的两个嵌套模型(EAT 评分+体积和 EAT 评分+体积+临床因素)和非增强扫描的一个(EAT 评分+CT 衰减)与 EAT 评分的 AUC 相似(均>0.05)。

结论

基于机器学习的放射组学生成的 EAT 评分在识别 AF 患者方面具有出色的性能。

知识的进步

基于机器学习的放射组学分析可在对比增强和非增强胸部 CT 上识别 EAT 中的 AF。

相似文献

3
Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: the Heinz Nixdorf Recall Study.
Eur Heart J Cardiovasc Imaging. 2014 Aug;15(8):863-9. doi: 10.1093/ehjci/jeu006. Epub 2014 Feb 4.
4
The Relationship between Enhancing Left Atrial Adipose Tissue at CT and Recurrent Atrial Fibrillation.
Radiology. 2022 Oct;305(1):56-65. doi: 10.1148/radiol.212644. Epub 2022 Jun 7.
5
[Association between inflammation activity of left atrial epicardial adipose tissue measured by F-FDG PET/CT and atrial fibrillation].
Zhonghua Xin Xue Guan Bing Za Zhi. 2021 Dec 24;49(12):1213-1219. doi: 10.3760/cma.j.cn112148-20211026-00913.
9
Association of epicardial and peri-atrial adiposity with the presence and severity of non-valvular atrial fibrillation.
Int J Cardiovasc Imaging. 2015 Mar;31(3):649-57. doi: 10.1007/s10554-014-0579-5. Epub 2014 Dec 3.

引用本文的文献

4
A Novel Data Augmentation Method for Radiomics Analysis Using Image Perturbations.
J Imaging Inform Med. 2024 Oct;37(5):2401-2414. doi: 10.1007/s10278-024-01013-0. Epub 2024 May 6.
5
Automatic epicardial adipose tissue segmentation in pulmonary computed tomography venography using nnU-Net.
Quant Imaging Med Surg. 2023 Oct 1;13(10):6482-6492. doi: 10.21037/qims-23-233. Epub 2023 Aug 16.
6
Artificial Intelligence in the Image-Guided Care of Atrial Fibrillation.
Life (Basel). 2023 Sep 5;13(9):1870. doi: 10.3390/life13091870.
7
Radiomic Phenotype of Periatrial Adipose Tissue in the Prognosis of Late Postablation Recurrence of Idiopathic Atrial Fibrillation.
Sovrem Tekhnologii Med. 2023;15(2):48-58. doi: 10.17691/stm2023.15.2.05. Epub 2023 Mar 29.
8
State of the art paper: Cardiac computed tomography of the left atrium in atrial fibrillation.
J Cardiovasc Comput Tomogr. 2023 May-Jun;17(3):166-176. doi: 10.1016/j.jcct.2023.03.002. Epub 2023 Mar 23.
9
Comparison of Chest Radiograph Captions Based on Natural Language Processing vs Completed by Radiologists.
JAMA Netw Open. 2023 Feb 1;6(2):e2255113. doi: 10.1001/jamanetworkopen.2022.55113.
10
Radiomics signature of epicardial adipose tissue for predicting postoperative atrial fibrillation after pulmonary endarterectomy.
Front Cardiovasc Med. 2023 Jan 9;9:1046931. doi: 10.3389/fcvm.2022.1046931. eCollection 2022.

本文引用的文献

1
Trends in Cardiovascular MRI and CT in the U.S. Medicare Population from 2012 to 2017.
Radiol Cardiothorac Imaging. 2021 Feb 25;3(1):e200112. doi: 10.1148/ryct.2021200112. eCollection 2021 Feb.
2
Myocardial Infarction Associates With a Distinct Pericoronary Adipose Tissue Radiomic Phenotype: A Prospective Case-Control Study.
JACC Cardiovasc Imaging. 2020 Nov;13(11):2371-2383. doi: 10.1016/j.jcmg.2020.06.033. Epub 2020 Aug 26.
4
6
A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans.
Comput Biol Med. 2019 Nov;114:103424. doi: 10.1016/j.compbiomed.2019.103424. Epub 2019 Sep 5.
9
Intraclass correlation - A discussion and demonstration of basic features.
PLoS One. 2019 Jul 22;14(7):e0219854. doi: 10.1371/journal.pone.0219854. eCollection 2019.
10
Smartwatch Performance for the Detection and Quantification of Atrial Fibrillation.
Circ Arrhythm Electrophysiol. 2019 Jun;12(6):e006834. doi: 10.1161/CIRCEP.118.006834.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验