Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Siemens Healthineers Ltd., Zhouzhu Rd.278, Shanghai, China.
Br J Radiol. 2022 Jul 1;95(1135):20211274. doi: 10.1259/bjr.20211274. Epub 2022 Apr 19.
The purpose is to establish and validate a machine-learning-derived radiomics approach to determine the existence of atrial fibrillation (AF) by analyzing epicardial adipose tissue (EAT) in CT images.
Patients with AF based on electrocardiographic tracing who underwent contrast-enhanced ( = 200) or non-enhanced ( = 300) chest CT scans were analyzed retrospectively. After EAT segmentation and radiomics feature extraction, the segmented EAT yielded 1691 radiomics features. The most contributive features to AF were selected by the Boruta algorithm and machine-learning-based random forest algorithm, and combined to construct a radiomics signature (EAT-score). Multivariate logistic regression was used to build clinical factor and nested models.
In the test cohort of contrast-enhanced scanning ( = 60/200), the AUC of EAT-score for identifying patients with AF was 0.92 (95%CI: 0.84-1.00), higher than 0.71 (0.58-0.85) of the clinical factor model (total cholesterol and body mass index) (DeLong's = 0.01), and higher than 0.73 (0.61-0.86) of the EAT volume model ( = 0.01). In the test cohort of non-enhanced scanning ( = 100/300), the AUC of EAT-score was 0.85 (0.77-0.92), higher than that of the CT attenuation model ( < 0.001). The two nested models (EAT-score+volume and EAT-score+volume+clinical factors) for contrast-enhanced scan and one (EAT-score+CT attenuation) for non-enhanced scan showed similar AUCs with that of EAT-score (all > 0.05).
EAT-score generated by machine-learning-based radiomics achieved high performance in identifying patients with AF.
A radiomics analysis based on machine learning allows for the identification of AF on the EAT in contrast-enhanced and non-enhanced chest CT.
通过分析心脏外膜脂肪组织(EAT)在 CT 图像中的存在,建立并验证一种基于机器学习的放射组学方法来确定心房颤动(AF)的存在。
对根据心电图描记进行对比增强(=200)或非增强(=300)胸部 CT 扫描的 AF 患者进行回顾性分析。在 EAT 分割和放射组学特征提取后,分割的 EAT 产生了 1691 个放射组学特征。Boruta 算法和基于机器学习的随机森林算法选择对 AF 最有贡献的特征,并将其组合构建放射组学特征(EAT 评分)。多元逻辑回归用于构建临床因素和嵌套模型。
在对比增强扫描的测试队列(=60/200)中,EAT 评分识别 AF 患者的 AUC 为 0.92(95%CI:0.84-1.00),高于临床因素模型(总胆固醇和体重指数)的 0.71(0.58-0.85)(DeLong's =0.01),也高于 EAT 体积模型(=0.01)的 0.73(0.61-0.86)。在非增强扫描的测试队列(=100/300)中,EAT 评分的 AUC 为 0.85(0.77-0.92),高于 CT 衰减模型(<0.001)。对比增强扫描的两个嵌套模型(EAT 评分+体积和 EAT 评分+体积+临床因素)和非增强扫描的一个(EAT 评分+CT 衰减)与 EAT 评分的 AUC 相似(均>0.05)。
基于机器学习的放射组学生成的 EAT 评分在识别 AF 患者方面具有出色的性能。
基于机器学习的放射组学分析可在对比增强和非增强胸部 CT 上识别 EAT 中的 AF。