Suppr超能文献

基于 XceptionNet 的深度学习在黑素瘤检测中的分类应用。

Deep Learning-Based Classification for Melanoma Detection Using XceptionNet.

机构信息

Gannan University of Science & Technology, Ganzhou 341000, Jiangxi, China.

Department of Surgery, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.

出版信息

J Healthc Eng. 2022 Mar 22;2022:2196096. doi: 10.1155/2022/2196096. eCollection 2022.

Abstract

Skin cancer is one of the most common types of cancer in the world, accounting for at least 40% of all cancers. Melanoma is considered as the 19th most commonly occurring cancer among the other cancers in the human society, such that about 300,000 new cases were found in 2018. While cancer diagnosis is based on interventional methods such as surgery, radiotherapy, and chemotherapy, studies show that the use of new computer technologies such as image processing mechanisms in processes related to early diagnosis of this cancer can help the physicians heal this cancer. This paper proposes an automatic method for diagnosis of skin cancer from dermoscopy images. The proposed model is based on an improved XceptionNet, which utilized swish activation function and depthwise separable convolutions. This system shows an improvement in the classification accuracy of the network compared to the original Xception and other dome architectures. Simulations of the proposed method are compared with some other related skin cancer diagnosis state-of-the-art solutions, and the results show that the suggested method achieves higher accuracy compared to the other comparative methods.

摘要

皮肤癌是世界上最常见的癌症类型之一,至少占所有癌症的 40%。黑色素瘤被认为是人类社会中除其他癌症之外第 19 种最常见的癌症,因此在 2018 年发现了约 30 万例新病例。虽然癌症诊断基于手术、放疗和化疗等介入方法,但研究表明,在与早期诊断这种癌症相关的过程中使用图像处理机制等新计算机技术可以帮助医生治疗这种癌症。本文提出了一种基于改进的 XceptionNet 的自动皮肤癌诊断方法,该模型利用了 swish 激活函数和深度可分离卷积。与原始的 Xception 和其他一些结构相比,该系统显示出网络分类精度的提高。对所提出的方法进行了模拟,并与其他一些相关的皮肤癌诊断的最新解决方案进行了比较,结果表明,所提出的方法与其他比较方法相比,具有更高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7b8/8964214/8f85c2f4a9f4/JHE2022-2196096.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验