Suppr超能文献

使用3D卷积网络从高光谱病理图像中识别黑色素瘤

Identification of Melanoma From Hyperspectral Pathology Image Using 3D Convolutional Networks.

作者信息

Wang Qian, Sun Li, Wang Yan, Zhou Mei, Hu Menghan, Chen Jiangang, Wen Ying, Li Qingli

出版信息

IEEE Trans Med Imaging. 2021 Jan;40(1):218-227. doi: 10.1109/TMI.2020.3024923. Epub 2020 Dec 29.

Abstract

Skin biopsy histopathological analysis is one of the primary methods used for pathologists to assess the presence and deterioration of melanoma in clinical. A comprehensive and reliable pathological analysis is the result of correctly segmented melanoma and its interaction with benign tissues, and therefore providing accurate therapy. In this study, we applied the deep convolution network on the hyperspectral pathology images to perform the segmentation of melanoma. To make the best use of spectral properties of three dimensional hyperspectral data, we proposed a 3D fully convolutional network named Hyper-net to segment melanoma from hyperspectral pathology images. In order to enhance the sensitivity of the model, we made a specific modification to the loss function with caution of false negative in diagnosis. The performance of Hyper-net surpassed the 2D model with the accuracy over 92%. The false negative rate decreased by nearly 66% using Hyper-net with the modified loss function. These findings demonstrated the ability of the Hyper-net for assisting pathologists in diagnosis of melanoma based on hyperspectral pathology images.

摘要

皮肤活检组织病理学分析是临床病理学家评估黑色素瘤的存在和恶化情况的主要方法之一。全面且可靠的病理分析是正确分割黑色素瘤及其与良性组织相互作用的结果,从而提供准确的治疗方案。在本研究中,我们将深度卷积网络应用于高光谱病理图像以进行黑色素瘤的分割。为了充分利用三维高光谱数据的光谱特性,我们提出了一种名为Hyper-net的3D全卷积网络,用于从高光谱病理图像中分割黑色素瘤。为了提高模型的敏感性,我们对损失函数进行了特定修改,同时注意诊断中的假阴性。Hyper-net的性能超过了二维模型,准确率超过92%。使用具有修改后损失函数的Hyper-net,假阴性率降低了近66%。这些发现证明了Hyper-net基于高光谱病理图像辅助病理学家诊断黑色素瘤的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验