Habibi Mohsen, Foroughi Shervin, Karamzadeh Vahid, Packirisamy Muthukumaran
Optical Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada.
Nat Commun. 2022 Apr 6;13(1):1800. doi: 10.1038/s41467-022-29395-1.
Photo- and thermo-activated reactions are dominant in Additive Manufacturing (AM) processes for polymerization or melting/deposition of polymers. However, ultrasound activated sonochemical reactions present a unique way to generate hotspots in cavitation bubbles with extraordinary high temperature and pressure along with high heating and cooling rates which are out of reach for the current AM technologies. Here, we demonstrate 3D printing of structures using acoustic cavitation produced directly by focused ultrasound which creates sonochemical reactions in highly localized cavitation regions. Complex geometries with zero to varying porosities and 280 μm feature size are printed by our method, Direct Sound Printing (DSP), in a heat curing thermoset, Poly(dimethylsiloxane) that cannot be printed directly so far by any method. Sonochemiluminescnce, high speed imaging and process characterization experiments of DSP and potential applications such as remote distance printing are presented. Our method establishes an alternative route in AM using ultrasound as the energy source.
光激活和热激活反应在聚合物聚合或熔化/沉积的增材制造(AM)过程中占主导地位。然而,超声激活的声化学反应提供了一种独特的方式,可在空化气泡中产生热点,这些热点具有极高的温度和压力,同时加热和冷却速率也很高,这是当前增材制造技术所无法实现的。在此,我们展示了利用聚焦超声直接产生的声空化进行结构的3D打印,该聚焦超声在高度局部化的空化区域引发声化学反应。通过我们的直接声打印(DSP)方法,在热固化热固性聚二甲基硅氧烷中打印出了孔隙率从零到变化不等且特征尺寸为280μm的复杂几何形状,而这种材料迄今为止无法通过任何方法直接打印。本文还介绍了DSP的声化学发光、高速成像和过程表征实验以及诸如远程打印等潜在应用。我们的方法为利用超声作为能源的增材制造建立了一条替代途径。