Suppr超能文献

抑郁和焦虑中的非线性概率加权:来自健康年轻成年人的见解。

Nonlinear Probability Weighting in Depression and Anxiety: Insights From Healthy Young Adults.

作者信息

Hagiwara Kosuke, Mochizuki Yasuhiro, Chen Chong, Lei Huijie, Hirotsu Masako, Matsubara Toshio, Nakagawa Shin

机构信息

Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan.

RIKEN Center for Brain Science, Wako, Japan.

出版信息

Front Psychiatry. 2022 Mar 24;13:810867. doi: 10.3389/fpsyt.2022.810867. eCollection 2022.

Abstract

Both depressive and anxiety disorders have been associated with excessive risk avoidant behaviors, which are considered an important contributor to the maintenance and recurrence of these disorders. However, given the high comorbidity between the two disorders, their independent association with risk preference remains unclear. Furthermore, due to the involvement of multiple cognitive computational factors in the decision-making tasks employed so far, the precise underlying mechanisms of risk preference are unknown. In the present study, we set out to investigate the common versus unique cognitive computational mechanisms of risk preference in depression and anxiety using a reward-based decision-making task and computational modeling based on economic theories. Specifically, in model-based analysis, we decomposed risk preference into utility sensitivity (a power function) and probability weighting (the one-parameter Prelec weighting function). Multiple linear regression incorporating depression (BDI-II) and anxiety (STAI state anxiety) simultaneously indicated that only depression was associated with one such risk preference parameter, probability weighting. As the symptoms of depression increased, subjects' tendency to overweight small probabilities and underweight large probabilities decreased. Neither depression nor anxiety was associated with utility sensitivity. These associations remained even after controlling covariates or excluding anxiety-relevant items from the depression scale. To our knowledge, this is the first study to assess risk preference due to a concave utility function and nonlinear probability weighting separately for depression and anxiety using computational modeling. Our results provide a mechanistic account of risk avoidance and may improve our understanding of decision-making deficits in depression and anxiety.

摘要

抑郁症和焦虑症都与过度的风险规避行为有关,这些行为被认为是这些疾病维持和复发的重要因素。然而,鉴于这两种疾病的高共病率,它们与风险偏好的独立关联仍不清楚。此外,由于到目前为止所采用的决策任务涉及多个认知计算因素,风险偏好的确切潜在机制尚不清楚。在本研究中,我们着手使用基于奖励的决策任务和基于经济理论的计算建模,来研究抑郁症和焦虑症中风险偏好的共同与独特认知计算机制。具体而言,在基于模型的分析中,我们将风险偏好分解为效用敏感性(幂函数)和概率加权(单参数普雷莱克加权函数)。同时纳入抑郁(贝克抑郁量表第二版)和焦虑(状态特质焦虑量表状态焦虑分量表)的多元线性回归表明,只有抑郁与这样一个风险偏好参数——概率加权有关。随着抑郁症状的增加,受试者对小概率事件的过度加权和对大概率事件的加权不足的倾向降低。抑郁和焦虑均与效用敏感性无关。即使在控制协变量或从抑郁量表中排除与焦虑相关的项目后,这些关联仍然存在。据我们所知,这是第一项使用计算建模分别评估抑郁症和焦虑症因凹形效用函数和非线性概率加权导致的风险偏好的研究。我们的结果为风险规避提供了一种机制解释,并可能增进我们对抑郁症和焦虑症决策缺陷的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b3c/8988187/240abec3e26c/fpsyt-13-810867-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验