Suppr超能文献

基于影像组学的肾脏表观扩散系数图图像表型分析:初步可行性与效能

Radiomics-Based Image Phenotyping of Kidney Apparent Diffusion Coefficient Maps: Preliminary Feasibility & Efficacy.

作者信息

Li Lu-Ping, Leidner Alexander S, Wilt Emily, Mikheev Artem, Rusinek Henry, Sprague Stuart M, Kohn Orly F, Srivastava Anand, Prasad Pottumarthi V

机构信息

Department of Radiology, North Shore University HealthSystem, Evanston, IL 60201, USA.

Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.

出版信息

J Clin Med. 2022 Apr 1;11(7):1972. doi: 10.3390/jcm11071972.

Abstract

Given the central role of interstitial fibrosis in disease progression in chronic kidney disease (CKD), a role for diffusion-weighted MRI has been pursued. We evaluated the feasibility and preliminary efficacy of using radiomic features to phenotype apparent diffusion coefficient (ADC) maps and hence to the clinical classification(s) of the participants. The study involved 40 individuals (10 healthy and 30 with CKD (eGFR < 60 mL/min/1.73 m2)). Machine learning methods, such as hierarchical clustering and logistic regression, were used. Clustering resulted in the identification of two clusters, one including all individuals with CKD (n = 17), while the second one included all the healthy volunteers (n = 10) and the remaining individuals with CKD (n = 13), resulting in 100% specificity. Logistic regression identified five radiomic features to classify participants as with CKD vs. healthy volunteers, with a sensitivity and specificity of 93% and 70%, respectively, and an AUC of 0.95. Similarly, four radiomic features were able to classify participants as rapid vs. non-rapid CKD progressors among the 30 individuals with CKD, with a sensitivity and specificity of 71% and 43%, respectively, and an AUC of 0.75. These promising preliminary data should support future studies with larger numbers of participants with varied disease severity and etiologies to improve performance.

摘要

鉴于间质纤维化在慢性肾脏病(CKD)疾病进展中的核心作用,人们一直在探索扩散加权磁共振成像(MRI)的作用。我们评估了利用放射组学特征对表观扩散系数(ADC)图进行表型分析从而对参与者进行临床分类的可行性和初步疗效。该研究纳入了40名个体(10名健康者和30名CKD患者(估算肾小球滤过率<60 mL/min/1.73 m²))。使用了机器学习方法,如层次聚类和逻辑回归。聚类结果识别出两个簇,一个簇包含所有CKD患者(n = 17),而另一个簇包含所有健康志愿者(n = 10)和其余CKD患者(n = 13),特异性为100%。逻辑回归识别出五个放射组学特征,用于将参与者分类为CKD患者与健康志愿者,敏感性和特异性分别为93%和70%,曲线下面积(AUC)为0.95。同样,在30名CKD患者中,四个放射组学特征能够将参与者分类为快速进展型与非快速进展型CKD患者,敏感性和特异性分别为71%和43%,AUC为0.75。这些有前景的初步数据应支持未来开展更大规模的研究,纳入疾病严重程度和病因各异的更多参与者,以提高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feb4/8999417/5936d88bf33b/jcm-11-01972-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验