Mathematics Department, King Abdulaziz University, Jeddah, Saudi Arabia.
PLoS One. 2022 Apr 14;17(4):e0265779. doi: 10.1371/journal.pone.0265779. eCollection 2022.
The COVID-19 pandemic spread rapidly worldwide. On September 15, 2021, a total of 546,251 confirmed cases were recorded in Saudi Arabia alone. Saudi Arabia imposed various levels of lockdown and forced the community to implement social distancing. In this paper, we formulate a mathematical model to study the impact of these measures on COVID-19 spread. The model is analyzed qualitatively, producing two equilibrium points. The existence and stability of the COVID-19 free equilibrium and the endemic equilibrium depend on the control reproduction number, [Formula: see text]. These results are in good agreement with the numerical experiments. Moreover, the model is fitted with actual data from the COVID-19 dashboard of the Saudi Ministry of Health. We divide the timeline from March 12, 2020, to September 23, 2020, into seven phases according to the varied applications of lockdown and social distancing. We then explore several scenarios to investigate the optimal application of these measures and address whether it is possible to rely solely on social distancing without imposing a lockdown.
新冠疫情在全球迅速蔓延。2021 年 9 月 15 日,仅沙特阿拉伯一国就记录了 546,251 例确诊病例。沙特阿拉伯实施了不同级别的封锁,并迫使社区实施社交距离措施。在本文中,我们构建了一个数学模型来研究这些措施对新冠疫情传播的影响。该模型进行了定性分析,产生了两个平衡点。新冠疫情无病平衡点和地方病平衡点的存在和稳定性取决于控制繁殖数 [Formula: see text]。这些结果与数值实验吻合较好。此外,该模型与沙特卫生部新冠疫情仪表板上的实际数据拟合。我们根据封锁和社交距离措施的不同应用,将 2020 年 3 月 12 日至 2020 年 9 月 23 日的时间线分为七个阶段。然后,我们探讨了几种情景,以研究这些措施的最佳应用,并探讨是否有可能仅依靠社交距离而不实施封锁。