Singh Priyanka, Katkar Pranav K, Patil Umakant M, Bohara Raghvendra A
D. Y. Patil Education Society (Institution Deemed to be University) Kolhapur (M.S) India
CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway Ireland.
RSC Adv. 2021 Mar 9;11(17):10130-10143. doi: 10.1039/d0ra09015h. eCollection 2021 Mar 5.
This work addresses the fabrication of an efficient, novel, and economically viable immunosensing armamentarium that will detect the carcinoembryonic antigen (CEA) typically associated with solid tumors (sarcomas, carcinomas, and lymphomas) and is used as a clinical tumor marker for all these malignancies. We synthesized silver nanoparticles by single-step chemical reduction and coated with silica using a modified Stober method to fabricate silica-coated silver core-shell nanoparticles. The morphologies, structure, and size of the nanoparticles were characterized by Transmission Electron Microscopy (TEM), UV-Visible spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infra-Red Spectroscopy (FTIR), and Dynamic Light Scattering (DLS), respectively. The results indicated that the average size of Ag nanoparticles and silica-coated Ag nanoparticles is 50 nm and 80 nm, respectively. Our TEM results indicate that the silica-shell uniformly encapsulates silver core particles. Further, a disposable electrochemical immunosensor for carcinoembryonic antigen (CEA) was proposed based on the antigen immobilized in a silica-coated silver core-shell nanoparticle film on the surface of an indium-tin-oxide (ITO) flat substrate. The morphological characteristics of the constructed biosensor were observed by scanning electron microscopy (SEM) and electrochemical methods. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed for the characterization of the proposed bioelectrode. The cyclic voltammogram appears to be more irreversible on silica coated silver core-shell nanoparticles. It is found that the fabricated immunosensor shows fast potentiometric response under the optimized conditions. The CEA could be determined in the linear range from 0.5 to 10 ng mL with a detection limit of 0.01 ng mL using the interface. The developed flat substrate of ITO for CEA detection (the model reagent) is a potentially promising immunosensing system, manifests good stability, and allows batch fabrication because of its economic feasibility.
这项工作致力于制造一种高效、新颖且经济可行的免疫传感设备,用于检测通常与实体瘤(肉瘤、癌和淋巴瘤)相关的癌胚抗原(CEA),并将其用作所有这些恶性肿瘤的临床肿瘤标志物。我们通过单步化学还原法合成了银纳米颗粒,并使用改进的斯托伯方法用二氧化硅进行包覆,以制备二氧化硅包覆的银核壳纳米颗粒。分别通过透射电子显微镜(TEM)、紫外可见光谱、X射线衍射(XRD)、拉曼光谱、傅里叶变换红外光谱(FTIR)和动态光散射(DLS)对纳米颗粒的形貌、结构和尺寸进行了表征。结果表明,银纳米颗粒和二氧化硅包覆的银纳米颗粒的平均尺寸分别为50纳米和80纳米。我们的TEM结果表明,二氧化硅壳均匀地包裹着银核颗粒。此外,基于固定在铟锡氧化物(ITO)平面基底表面的二氧化硅包覆银核壳纳米颗粒膜中的抗原,提出了一种用于癌胚抗原(CEA)的一次性电化学免疫传感器。通过扫描电子显微镜(SEM)和电化学方法观察了构建的生物传感器的形态特征。采用电化学阻抗谱(EIS)和循环伏安法(CV)对所提出的生物电极进行表征。在二氧化硅包覆的银核壳纳米颗粒上,循环伏安图似乎更不可逆。发现在优化条件下,所制备的免疫传感器显示出快速电位响应。使用该界面,CEA可在0.5至10 ng/mL的线性范围内测定,检测限为0.01 ng/mL。所开发的用于CEA检测的ITO平面基底(模型试剂)是一种具有潜在前景的免疫传感系统,具有良好的稳定性,并且由于其经济可行性而允许批量制造。