Suppr超能文献

工程化 Fe(II)/α-酮戊二酸依赖的卤代酶和去饱和酶。

Engineering Fe(II)/α-Ketoglutarate-Dependent Halogenases and Desaturases.

机构信息

Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.

出版信息

Biochemistry. 2023 Jan 17;62(2):229-240. doi: 10.1021/acs.biochem.2c00115. Epub 2022 Apr 21.

Abstract

Fe(II)/α-ketoglutarate-dependent dioxygenases (KGDs) are widespread enzymes in aerobic biology and serve a remarkable array of biological functions, including roles in collagen biosynthesis, plant and animal development, transcriptional regulation, nucleic acid modification, and secondary metabolite biosynthesis. This functional diversity is reflected in the enzymes' catalytic flexibility as KGDs can catalyze an intriguing set of synthetically valuable reactions, such as hydroxylations, halogenations, and desaturations, capturing the interest of scientists across disciplines. Mechanistically, all KGDs are understood to follow a similar activation pathway to generate a substrate radical, yet how individual members of the enzyme family direct this key intermediate toward the different reaction outcomes remains elusive, triggering structural, computational, spectroscopic, kinetic, and enzyme engineering studies. In this Perspective, we will highlight how first enzyme and substrate engineering examples suggest that the chemical reaction pathway within KGDs can be intentionally tailored using rational design principles. We will delineate the structural and mechanistic investigations of the reprogrammed enzymes and how they begin to inform about the enzymes' structure-function relationships that determine chemoselectivity. Application of this knowledge in future enzyme and substrate engineering campaigns will lead to the development of powerful C-H activation catalysts for chemical synthesis.

摘要

铁(II)/α-酮戊二酸依赖的双加氧酶(KGDs)是好氧生物中广泛存在的酶,具有多种生物学功能,包括在胶原生物合成、植物和动物发育、转录调控、核酸修饰和次生代谢物生物合成中的作用。这种功能多样性反映在酶的催化灵活性上,因为 KGDs 可以催化一组有趣的具有合成价值的反应,如羟化、卤化和去饱和,这引起了跨学科科学家的兴趣。从机制上讲,所有的 KGDs 都被认为遵循相似的激活途径来产生底物自由基,但酶家族的各个成员如何将这个关键中间体引导到不同的反应结果仍然难以捉摸,这引发了结构、计算、光谱、动力学和酶工程研究。在本观点中,我们将强调第一个酶和底物工程的例子如何表明可以使用合理的设计原则有目的地调整 KGDs 内的化学反应途径。我们将描述重新编程酶的结构和机制研究,以及它们如何开始提供关于决定化学选择性的酶结构-功能关系的信息。将这些知识应用于未来的酶和底物工程活动中,将导致用于化学合成的强大 C-H 活化催化剂的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验