Suppr超能文献

用于高效且稳健的草药图像识别的深度学习移动应用程序。

Deep learning-enabled mobile application for efficient and robust herb image recognition.

作者信息

Sun Xin, Qian Huinan, Xiong Yiliang, Zhu Yingli, Huang Zhaohan, Yang Feng

机构信息

School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.

School of Traditional Chinese Classics, Beijing University of Chinese Medicine, Beijing, 100029, China.

出版信息

Sci Rep. 2022 Apr 21;12(1):6579. doi: 10.1038/s41598-022-10449-9.

Abstract

With the increasing popularity of herbal medicine, high standards of the high quality control of herbs becomes a necessity, with the herb recognition as one of the great challenges. Due to the complicated processing procedure of the herbs, methods of manual recognition that require chemical materials and expert knowledge, such as fingerprint and experience, have been used. Automatic methods can partially alleviate the problem by deep learning based herb image recognition, but most studies require powerful and expensive computation hardware, which is not friendly to resource-limited settings. In this paper, we introduce a deep learning-enabled mobile application which can run entirely on common low-cost smartphones for efficient and robust herb image recognition with a quite competitive recognition accuracy in resource-limited situations. We hope this application can make contributions to the increasing accessibility of herbal medicine worldwide.

摘要

随着草药的日益普及,高标准的草药质量控制成为必要,其中草药识别是巨大挑战之一。由于草药的加工过程复杂,已采用了需要化学材料和专业知识的人工识别方法,如指纹识别和经验识别。自动方法可以通过基于深度学习的草药图像识别部分缓解该问题,但大多数研究需要强大且昂贵的计算硬件,这对资源有限的环境不太友好。在本文中,我们介绍了一种支持深度学习的移动应用程序,它可以完全在普通低成本智能手机上运行,以便在资源有限的情况下进行高效且稳健的草药图像识别,且识别准确率颇具竞争力。我们希望该应用程序能为全球范围内草药可及性的提高做出贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验