Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
ACS Sens. 2022 May 27;7(5):1323-1335. doi: 10.1021/acssensors.1c02061. Epub 2022 Apr 22.
Serotonin is a key neurotransmitter involved in numerous physiological processes and serves as an important precursor for manufacturing bioactive indoleamines and alkaloids used in the treatment of human pathologies. In humans, serotonin sensing and signaling can occur by 12 G protein-coupled receptors (GPCRs) coupled to Gα proteins. In yeast, human serotonin GPCRs coupled to Gα proteins have previously been shown to function as whole-cell biosensors of serotonin. However, systematic characterization of serotonin biosensing modalities between variant serotonin GPCRs and application thereof for high-resolution serotonin quantification is still awaiting. To systematically assess GPCR signaling in response to serotonin, we characterized reporter gene expression at two different pHs of a 144-sized library encoding all 12 human serotonin GPCRs in combination with 12 different Gα proteins engineered in yeast. From this screen, we observed changes in the biosensor sensitivities of >4 orders of magnitude. Furthermore, adopting optimal biosensing designs and pH conditions enabled high-resolution high-performance liquid chromatography-validated sensing of serotonin produced in yeast. Lastly, we used the yeast platform to characterize 19 serotonin GPCR polymorphisms found in human populations. While major differences in signaling were observed among the individual polymorphisms when studied in yeast, a cross-comparison of selected variants in mammalian cells showed both similar and disparate results. Taken together, our study highlights serotonin biosensing modalities of relevance to both biotechnological and potential human health applications.
血清素是一种参与多种生理过程的关键神经递质,也是制造用于治疗人类疾病的生物活性吲哚胺和生物碱的重要前体。在人类中,血清素的感应和信号传递可以通过与 G 蛋白偶联的 12 个 G 蛋白偶联受体 (GPCRs) 发生。在酵母中,先前已经证明与 G 蛋白偶联的人类血清素 GPCR 可以作为血清素的全细胞生物传感器。然而,变体血清素 GPCR 之间的血清素生物感应模式的系统特征化及其在高分辨率血清素定量中的应用仍有待研究。为了系统评估血清素对 GPCR 信号的作用,我们在编码 12 个人类血清素 GPCR 与 12 种不同 Gα 蛋白的 144 个大小文库的两个不同 pH 值下,对报告基因表达进行了特征描述,该文库在酵母中进行了工程改造。通过该筛选,我们观察到生物传感器灵敏度变化超过 4 个数量级。此外,采用最佳的生物感应设计和 pH 条件,实现了在酵母中产生的血清素的高分辨率、高性能液相色谱验证的感应。最后,我们使用酵母平台来研究在人类群体中发现的 19 种血清素 GPCR 多态性。虽然在酵母中研究单个多态性时观察到信号传递存在显著差异,但在哺乳动物细胞中对选定变体进行交叉比较显示出相似和不同的结果。总之,我们的研究强调了与生物技术和潜在人类健康应用相关的血清素生物感应模式。