Suppr超能文献

理解大流行模型的动态,以支持对 COVID-19 传播的预测:SIR 类模型的参数敏感性分析。

Understanding Dynamics of Pandemic Models to Support Predictions of COVID-19 Transmission: Parameter Sensitivity Analysis of SIR-Type Models.

出版信息

IEEE J Biomed Health Inform. 2022 Jun;26(6):2458-2468. doi: 10.1109/JBHI.2022.3168825. Epub 2022 Jun 3.

Abstract

Despite efforts made to model and predict COVID-19 transmission, large predictive uncertainty remains. Failure to understand the dynamics of the nonlinear pandemic prediction model is an important reason. To this end, local and multiple global sensitivity analysis approaches are synthetically applied to analyze the sensitivities of parameters and initial state variables and community size (N) in susceptible-infected-recovered (SIR) and its variant susceptible-exposed-infected-recovered (SEIR) models and basic reproduction number (R0), aiming to provide prior information for parameter estimation and suggestions for COVID-19 prevention and control measures. We found that N influences both the maximum number of actively infected cases and the date on which the maximum number of actively infected cases is reached. The high effect of N on maximum actively infected cases and peak date suggests the necessity of isolating the infected cases in a small community. The protection rate and average quarantined time are most sensitive to the infected populations, with a summation of their first-order sensitivity indices greater than 0.585, and their interactions are also substantial, being 0.389 and 0.334, respectively. The high sensitivities and interaction between the protection rate and average quarantined time suggest that protection and isolation measures should always be implemented in conjunction and started as early as possible. These findings provide insights into the predictability of the pandemic models by estimating influential parameters and suggest how to effectively prevent and control epidemic transmission.

摘要

尽管已经做出努力来建立模型和预测 COVID-19 的传播,但仍然存在很大的预测不确定性。未能理解非线性大流行预测模型的动态是一个重要原因。为此,综合应用局部和多个全局敏感性分析方法,对易感-感染-恢复(SIR)及其变体易暴露-感染-恢复(SEIR)模型中的参数和初始状态变量以及社区规模(N)和基本再生数(R0)的敏感性进行分析,旨在为参数估计提供先验信息,并为 COVID-19 的防控措施提供建议。我们发现,N 同时影响最大活跃感染人数和达到最大活跃感染人数的日期。N 对最大活跃感染人数和高峰期的高度影响表明,在小社区中隔离感染者是必要的。保护率和平均隔离时间对感染人群最敏感,其一阶灵敏度指数之和大于 0.585,相互作用也很大,分别为 0.389 和 0.334。保护率和平均隔离时间之间的高敏感性和相互作用表明,保护和隔离措施应始终同时实施,并尽早开始。这些发现通过估计有影响的参数,为预测大流行模型的可预测性提供了一些见解,并提出了如何有效预防和控制传染病传播的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6686/9328724/927f80f48cf9/ma1-3168825.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验