Suppr超能文献

确定重症患者气管插管的隆突与锁骨距离依赖性定位:一种基于人工智能的方法。

Determining Carina and Clavicular Distance-Dependent Positioning of Endotracheal Tube in Critically Ill Patients: An Artificial Intelligence-Based Approach.

作者信息

Tsai Lung-Wen, Yuan Kuo-Ching, Hou Sen-Kuang, Wu Wei-Lin, Hsu Chen-Hao, Liu Tyng-Luh, Lee Kuang-Min, Li Chiao-Hsuan, Chen Hann-Chyun, Tu Ethan, Dubey Rajni, Yeh Chun-Fu, Chen Ray-Jade

机构信息

Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan.

Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan.

出版信息

Biology (Basel). 2022 Mar 23;11(4):490. doi: 10.3390/biology11040490.

Abstract

Early and accurate prediction of endotracheal tube (ETT) location is pivotal for critically ill patients. Automatic and timely detection of faulty ETT locations from chest X-ray images may avert patients' morbidity and mortality. Therefore, we designed convolutional neural network (CNN)-based algorithms to evaluate ETT position appropriateness relative to four detected key points, including tracheal tube end, carina, and left/right clavicular heads on chest radiographs. We estimated distances from the tube end to tracheal carina and the midpoint of clavicular heads. A DenseNet121 encoder transformed images into embedding features, and a CNN-based decoder generated the probability distributions. Based on four sets of tube-to-carina distance-dependent parameters (i.e., (i) 30-70 mm, (ii) 30-60 mm, (iii) 20-60 mm, and (iv) 20-55 mm), corresponding models were generated, and their accuracy was evaluated through the predicted L1 distance to ground-truth coordinates. Based on tube-to-carina and tube-to-clavicle distances, the highest sensitivity, and specificity of 92.85% and 84.62% respectively, were revealed for 20-55 mm. This implies that tube-to-carina distance between 20 and 55 mm is optimal for an AI-based key point appropriateness detection system and is empirically comparable to physicians' consensus.

摘要

早期准确预测气管插管(ETT)位置对重症患者至关重要。从胸部X光图像中自动及时检测出ETT位置错误可避免患者发病和死亡。因此,我们设计了基于卷积神经网络(CNN)的算法,以评估ETT位置相对于四个检测到的关键点的适宜性,这些关键点包括气管导管末端、隆突以及胸部X光片上的左/右锁骨头部。我们估计了从导管末端到气管隆突以及锁骨头部中点的距离。一个DenseNet121编码器将图像转换为嵌入特征,一个基于CNN的解码器生成概率分布。基于四组与导管到隆突距离相关的参数(即,(i)30 - 70毫米,(ii)30 - 60毫米,(iii)20 - 60毫米,和(iv)20 - 55毫米),生成了相应的模型,并通过预测的到真实坐标的L1距离评估其准确性。基于导管到隆突和导管到锁骨的距离,对于20 - 55毫米的情况,分别显示出最高的灵敏度和特异性,分别为92.85%和84.62%。这意味着20至55毫米之间的导管到隆突距离对于基于人工智能的关键点适宜性检测系统是最佳的,并且在经验上与医生的共识相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7b/9027916/deff4e419a3a/biology-11-00490-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验