Computer Science & Engineering, Lloyd Institute of Engineering and Technology, Greater Noida, India.
Computer Engineering Department, University of Diyala, Iraq.
Comput Intell Neurosci. 2022 Apr 12;2022:5731532. doi: 10.1155/2022/5731532. eCollection 2022.
Millions of people worldwide suffer from depression. Assessing, treating, and preventing recurrence requires early detection of depressive symptoms as depression-related datasets expand and machine learning improves, intelligent approaches to detect depression in written material may emerge. This study provides an effective method for identifying texts describing self-perceived depressive symptoms by using long short-term memory (LSTM) based recurrent neural networks (RNN). On a huge dataset of a suicide and depression detection dataset taken from Kaggle with 233337 datasets, this information channel featured text-based teen questions. Then, using a one-hot technique, medical and psychiatric practitioners extract strong features from probably depressed symptoms. The characteristics outperform the usual techniques, which rely on word frequencies rather than symptoms to explain the underlying events in text messages. Depression symptoms can be distinguished from nondepression signals by using a deep learning system (nondepression posts). Eventually, depression is predicted by the RNN. In the suggested technique, the frequency of depressive symptoms outweighs their specificity. With correct annotations and symptom-based feature extraction, the method may be applied to different depression datasets. Because of this, chatbots and depression prediction can work together.
全世界有数百万人患有抑郁症。随着抑郁症相关数据集的扩大和机器学习的改进,评估、治疗和预防复发需要早期发现抑郁症状,因此,在书面材料中检测抑郁症的智能方法可能会出现。本研究通过使用基于长短期记忆(LSTM)的递归神经网络(RNN),为识别描述自我感知抑郁症状的文本提供了一种有效方法。在 Kaggle 上的自杀和抑郁症检测数据集的一个巨大数据集(233337 个数据集)中,该信息通道以基于文本的青少年问题为特色。然后,使用 one-hot 技术,医疗和精神科医生从可能的抑郁症状中提取出强特征。这些特征优于通常依赖于词频而不是症状来解释文本信息中潜在事件的技术。通过使用深度学习系统(非抑郁帖子)可以将抑郁症状与非抑郁信号区分开来。最终,RNN 预测抑郁。在建议的技术中,抑郁症状的频率超过了其特异性。通过正确的注释和基于症状的特征提取,该方法可以应用于不同的抑郁症数据集。因此,聊天机器人和抑郁症预测可以协同工作。