Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA.
Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.
Antimicrob Agents Chemother. 2022 May 17;66(5):e0225021. doi: 10.1128/aac.02250-21. Epub 2022 Apr 26.
Fungal infections are a major health concern because of limited antifungal drugs and development of drug resistance. can develop azole drug resistance by overexpression of drug efflux pumps or mutating , the target of azoles. However, the role of epigenetic histone modifications in azole-induced gene expression and drug resistance is poorly understood in Candida glabrata. In this study, we show that Set1 mediates histone H3K4 methylation in C. glabrata. In addition, loss of and histone H3K4 methylation increases azole susceptibility in both C. glabrata and S. cerevisiae. This increase in azole susceptibility in S. cerevisiae and C. glabrata strains lacking is due to distinct mechanisms. For S. cerevisiae, loss of decreased the expression and function of the efflux pump Pdr5, but not expression under azole treatment. In contrast, loss of in C. glabrata does not alter expression or function of efflux pumps. However, RNA sequencing revealed that C. glabrata Set1 is necessary for azole-induced expression of all 12 genes in the late ergosterol biosynthesis pathway, including and Furthermore, chromatin immunoprecipitation analysis shows histone H3K4 trimethylation increases upon azole-induced gene expression. In addition, high performance liquid chromatography analysis indicated Set1 is necessary for maintaining proper ergosterol levels under azole treatment. Clinical isolates lacking were also hypersusceptible to azoles which is attributed to reduced expression but not defects in drug efflux. Overall, Set1 contributes to azole susceptibility in a species-specific manner by altering the expression and consequently disrupting pathways known for mediating drug resistance.
真菌感染是一个主要的健康问题,因为抗真菌药物有限且存在药物耐药性的发展。真菌可以通过过度表达药物外排泵或突变唑类药物的靶标来产生唑类耐药性。然而,组蛋白修饰在念珠菌属中唑类诱导基因表达和耐药性中的作用知之甚少。在这项研究中,我们表明 Set1 介导了 C. glabrata 中的组蛋白 H3K4 甲基化。此外, 缺失和组蛋白 H3K4 甲基化增加了两性霉素 B 和氟康唑在 C. glabrata 和 S. cerevisiae 中的敏感性。S. cerevisiae 和缺乏 的 C. glabrata 菌株中唑类敏感性的增加是由于不同的机制。对于 S. cerevisiae, 缺失降低了外排泵 Pdr5 的表达和功能,但在唑类处理下 表达没有降低。相比之下,C. glabrata 中 缺失不会改变外排泵的表达或功能。然而,RNA 测序表明 C. glabrata Set1 是唑类诱导晚期麦角固醇生物合成途径中所有 12 个基因表达所必需的,包括 和 。此外,染色质免疫沉淀分析表明,唑类诱导 基因表达时组蛋白 H3K4 三甲基化增加。此外,高效液相色谱分析表明 Set1 是维持唑类处理下适当麦角固醇水平所必需的。缺乏 的临床分离株也对唑类药物高度敏感,这归因于 表达减少而不是药物外排缺陷。总的来说,Set1 通过改变表达,进而破坏已知介导耐药性的途径,以特定于物种的方式促进唑类药物的敏感性。