Suppr超能文献

对未来热带气旋风险进行全球一致的地方尺度评估。

A globally consistent local-scale assessment of future tropical cyclone risk.

作者信息

Bloemendaal Nadia, de Moel Hans, Martinez Andrew B, Muis Sanne, Haigh Ivan D, van der Wiel Karin, Haarsma Reindert J, Ward Philip J, Roberts Malcolm J, Dullaart Job C M, Aerts Jeroen C J H

机构信息

Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands.

Office of Macroeconomic Analysis, U.S. Department of the Treasury, 1500 Pennsylvania Ave., NW, Washington, DC 20220, USA.

出版信息

Sci Adv. 2022 Apr 29;8(17):eabm8438. doi: 10.1126/sciadv.abm8438. Epub 2022 Apr 27.

Abstract

There is considerable uncertainty surrounding future changes in tropical cyclone (TC) frequency and intensity, particularly at local scales. This uncertainty complicates risk assessments and implementation of risk mitigation strategies. We present a novel approach to overcome this problem, using the statistical model STORM to generate 10,000 years of synthetic TCs under past (1980-2017) and future climate (SSP585; 2015-2050) conditions from an ensemble of four high-resolution climate models. We then derive high-resolution (10-km) wind speed return period maps up to 1000 years to assess local-scale changes in wind speed probabilities. Our results indicate that the probability of intense TCs, on average, more than doubles in all regions except for the Bay of Bengal and the Gulf of Mexico. Our unique and innovative methodology enables globally consistent comparison of TC risk in both time and space and can be easily adapted to accommodate alternative climate scenarios and time periods.

摘要

热带气旋(TC)频率和强度的未来变化存在相当大的不确定性,尤其是在局部尺度上。这种不确定性使风险评估和风险缓解策略的实施变得复杂。我们提出了一种新颖的方法来克服这个问题,即使用统计模型STORM,根据四个高分辨率气候模型的集合,在过去(1980 - 2017年)和未来气候(SSP585;2015 - 2050年)条件下生成10000年的合成热带气旋。然后,我们推导了高达1000年的高分辨率(10公里)风速重现期地图,以评估风速概率的局部尺度变化。我们的结果表明,除孟加拉湾和墨西哥湾外,所有地区强烈热带气旋的概率平均增加了一倍多。我们独特且创新的方法能够在时间和空间上对热带气旋风险进行全球一致的比较,并且可以轻松调整以适应替代气候情景和时间段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d863/9045717/38a4a8d7ba6d/sciadv.abm8438-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验