Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Cancer Sci. 2022 Jul;113(7):2434-2445. doi: 10.1111/cas.15395. Epub 2022 May 25.
Early diagnosis of urological diseases is often difficult due to the lack of specific biomarkers. More powerful and less invasive biomarkers that can be used simultaneously to identify urological diseases could improve patient outcomes. The aim of this study was to evaluate a urological disease-specific scoring system established with a machine learning (ML) approach using Ig N-glycan signatures. Immunoglobulin N-glycan signatures were analyzed by capillary electrophoresis from 1312 serum subjects with hormone-sensitive prostate cancer (n = 234), castration-resistant prostate cancer (n = 94), renal cell carcinoma (n = 100), upper urinary tract urothelial cancer (n = 105), bladder cancer (n = 176), germ cell tumors (n = 73), benign prostatic hyperplasia (n = 95), urosepsis (n = 145), and urinary tract infection (n = 21) as well as healthy volunteers (n = 269). Immunoglobulin N-glycan signature data were used in a supervised-ML model to establish a scoring system that gave the probability of the presence of a urological disease. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUC). The supervised-ML urologic disease-specific scores clearly discriminated the urological diseases (AUC 0.78-1.00) and found a distinct N-glycan pattern that contributed to detect each disease. Limitations included the retrospective and limited pathological information regarding urological diseases. The supervised-ML urological disease-specific scoring system based on Ig N-glycan signatures showed excellent diagnostic ability for nine urological diseases using a one-time serum collection and could be a promising approach for the diagnosis of urological diseases.
由于缺乏特异性生物标志物,泌尿系统疾病的早期诊断往往较为困难。如果能同时使用更强大、侵入性更小的生物标志物来识别泌尿系统疾病,可能会改善患者的预后。本研究旨在评估一种使用机器学习(ML)方法建立的泌尿系统疾病特异性评分系统,该系统基于免疫球蛋白 N-聚糖特征。对来自 1312 例血清样本(激素敏感性前列腺癌 n=234、去势抵抗性前列腺癌 n=94、肾细胞癌 n=100、上尿路尿路上皮癌 n=105、膀胱癌 n=176、生殖细胞瘤 n=73、良性前列腺增生 n=95、尿脓毒症 n=145 和尿路感染 n=21)和健康志愿者 n=269)的血清样本,使用毛细管电泳分析免疫球蛋白 N-聚糖特征。利用免疫球蛋白 N-聚糖特征数据,在一个有监督的 ML 模型中建立一个评分系统,该系统给出了存在泌尿系统疾病的概率。使用接收者操作特征曲线下的面积(AUC)来评估诊断性能。有监督的 ML 泌尿系统疾病特异性评分系统能清晰地区分泌尿系统疾病(AUC 0.78-1.00),并发现一种独特的 N-聚糖模式,有助于检测每种疾病。本研究的局限性包括对泌尿系统疾病的回顾性和有限的病理信息。基于 Ig N-聚糖特征的有监督 ML 泌尿系统疾病特异性评分系统,使用一次性血清采集即可对 9 种泌尿系统疾病进行出色的诊断,这可能是泌尿系统疾病诊断的一种很有前途的方法。