Turegano-Lopez Marta, Santuy Andrea, Kastanauskaite Asta, Rodriguez Jose-Rodrigo, DeFelipe Javier, Merchan-Perez Angel
Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain.
Ph.D. Program in Neuroscience, Universidad Autónoma de Madrid - Instituto Cajal, Madrid, Spain.
Front Neuroanat. 2022 Apr 21;16:852057. doi: 10.3389/fnana.2022.852057. eCollection 2022.
The structural complexity of nervous tissue makes it very difficult to unravel the connectivity between neural elements at different scales. Numerous methods are available to trace long-range projections at the light microscopic level, and to identify the actual synaptic connections at the electron microscopic level. However, correlating mesoscopic and nanoscopic scales in the same cell, cell population or brain region is a problematic, laborious and technically demanding task. Here we present an effective method for the 3D reconstruction of labeled subcellular structures at the ultrastructural level, after single-neuron labeling in fixed tissue. The brain is fixed by intracardial perfusion of aldehydes and thick vibratome sections (250 μm) are obtained. Single cells in these vibratome sections are intracellularly injected with horseradish peroxidase (HRP), so that the cell body and its processes can be identified. The thick sections are later flat-embedded in epoxy resin and re-sectioned into a series of thinner (7 μm) sections. The sections containing the regions of interest of the labeled cells are then imaged with automated focused ion beam milling and scanning electron microscopy (FIB-SEM), acquiring long series of high-resolution images that can be reconstructed, visualized, and analyzed in 3D. With this methodology, we can accurately select any cellular segment at the light microscopic level (e.g., proximal, intermediate or distal dendrites, collateral branches, axonal segments, etc.) and analyze its synaptic connections at the electron microscopic level, along with other ultrastructural features. Thus, this method not only facilitates the mapping of the synaptic connectivity of single-labeled neurons, but also the analysis of the surrounding neuropil. Since the labeled processes can be located at different layers or subregions, this method can also be used to obtain data on the differences in local synaptic organization that may exist at different portions of the labeled neurons.
神经组织的结构复杂性使得很难在不同尺度上解析神经元件之间的连接性。有许多方法可用于在光学显微镜水平追踪长程投射,并在电子显微镜水平识别实际的突触连接。然而,在同一细胞、细胞群体或脑区中关联介观和纳米尺度是一项有问题、费力且技术要求高的任务。在这里,我们提出了一种有效的方法,用于在固定组织中对单个神经元进行标记后,在超微结构水平对标记的亚细胞结构进行三维重建。通过心脏内灌注醛类固定大脑,获得厚的振动切片(250μm)。在这些振动切片中的单个细胞内注射辣根过氧化物酶(HRP),以便识别细胞体及其突起。随后将厚切片平嵌入环氧树脂中,并重新切成一系列更薄的(7μm)切片。然后使用自动聚焦离子束铣削和扫描电子显微镜(FIB-SEM)对包含标记细胞感兴趣区域的切片进行成像,获取可进行三维重建、可视化和分析的长系列高分辨率图像。使用这种方法,我们可以在光学显微镜水平准确选择任何细胞段(例如,近端、中间或远端树突、侧支、轴突段等),并在电子显微镜水平分析其突触连接以及其他超微结构特征。因此,该方法不仅有助于绘制单标记神经元突触连接图,还便于分析周围的神经毡。由于标记的突起可以位于不同层或亚区域,该方法还可用于获取关于标记神经元不同部分可能存在的局部突触组织差异的数据。