Suppr超能文献

使用深度学习影像组学区分有患阿尔茨海默病风险的认知正常成年人与正常对照:一项基于结构磁共振成像的探索性研究。

Using Deep Learning Radiomics to Distinguish Cognitively Normal Adults at Risk of Alzheimer's Disease From Normal Control: An Exploratory Study Based on Structural MRI.

作者信息

Jiang Jiehui, Zhang Jieming, Li Zhuoyuan, Li Lanlan, Huang Bingcang

机构信息

Department of Radiology, Gongli Hospital, School of Medicine, Shanghai University, Shanghai, China.

School of Life Sciences, Institute of Biomedical Engineering, Shanghai University, Shanghai, China.

出版信息

Front Med (Lausanne). 2022 Apr 21;9:894726. doi: 10.3389/fmed.2022.894726. eCollection 2022.

Abstract

OBJECTIVES

We proposed a novel deep learning radiomics (DLR) method to distinguish cognitively normal adults at risk of Alzheimer's disease (AD) from normal control based on T1-weighted structural MRI images.

METHODS

In this study, we selected MRI data from the Alzheimer's Disease Neuroimaging Initiative Database (ADNI), which included 417 cognitively normal adults. These subjects were divided into 181 individuals at risk of Alzheimer's disease (preAD group) and 236 normal control individuals (NC group) according to standard uptake ratio >1.18 calculated by amyloid Positron Emission Tomography (PET). We further divided the preaAD group into APOE+ and APOE subgroups according to whether APOE ε4 was positive or not. All data sets were divided into one training/validation group and one independent test group. The proposed DLR method included three steps: (1) the pre-training of basic deep learning (DL) models, (2) the extraction, selection and fusion of DLR features, and (3) classification. The support vector machine (SVM) was used as the classifier. In the comparative experiments, we compared our proposed DLR method with three existing models: hippocampal model, clinical model, and traditional radiomics model. Ten-fold cross-validation was performed with 100 time repetitions.

RESULTS

The DLR method achieved the best classification performance between preAD and NC than other models with an accuracy of 89.85% ± 1.12%. In comparison, the accuracies of the other three models were 72.44% ± 1.37%, 82.00% ± 4.09% and 79.65% ± 2.21%. In addition, the DLR model also showed the best classification performance (85.45% ± 9.04% and 92.80% ± 2.61%) in the subgroup experiment.

CONCLUSION

The results showed that the DLR method provided a potentially clinical value to distinguish preAD from NC.

摘要

目的

我们提出了一种新型的深度学习放射组学(DLR)方法,基于T1加权结构MRI图像将有患阿尔茨海默病(AD)风险的认知正常成年人与正常对照区分开来。

方法

在本研究中,我们从阿尔茨海默病神经影像倡议数据库(ADNI)中选取了MRI数据,其中包括417名认知正常的成年人。根据淀粉样蛋白正电子发射断层扫描(PET)计算的标准摄取值>1.18,将这些受试者分为181名有患阿尔茨海默病风险的个体(preAD组)和236名正常对照个体(NC组)。我们进一步根据APOE ε4是否为阳性将preAD组分为APOE+和APOE亚组。所有数据集被分为一个训练/验证组和一个独立测试组。所提出的DLR方法包括三个步骤:(1)基础深度学习(DL)模型的预训练,(2)DLR特征的提取、选择和融合,以及(3)分类。支持向量机(SVM)用作分类器。在比较实验中,我们将所提出的DLR方法与三个现有模型进行了比较:海马模型、临床模型和传统放射组学模型。进行了100次重复的十折交叉验证。

结果

DLR方法在preAD和NC之间实现了比其他模型更好的分类性能,准确率为89.85%±1.12%。相比之下,其他三个模型的准确率分别为72.44%±1.37%、82.00%±4.09%和79.65%±2.21%。此外,DLR模型在亚组实验中也表现出最佳的分类性能(85.45%±9.04%和92.80%±2.61%)。

结论

结果表明,DLR方法为区分preAD和NC提供了潜在的临床价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc09/9070098/0dee6689289f/fmed-09-894726-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验