Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan.
Department of Medical Physics, Osaka Heavy Ion Therapy Center, Chuo-ku, Osaka-city, Osaka, Japan.
PLoS One. 2022 May 10;17(5):e0268087. doi: 10.1371/journal.pone.0268087. eCollection 2022.
In this study, we report our experience in commissioning a commercial treatment planning system (TPS) for fast-raster scanning of carbon-ion beams. This TPS uses an analytical dose calculation algorithm, a pencil-beam model with a triple Gaussian form for the lateral-dose distribution, and a beam splitting algorithm to consider lateral heterogeneity in a medium. We adopted the mixed beam model as the relative biological effectiveness (RBE) model for calculating the RBE values of the scanned carbon-ion beam. To validate the modeled physical dose, we compared the calculations with measurements of various relevant quantities as functions of the field size, range and width of the spread-out Bragg peak (SOBP), and depth-dose and lateral-dose profiles for a 6-mm SOBP in water. To model the biological dose, we compared the RBE calculated with the newly developed TPS to the RBE calculated with a previously validated TPS that is in clinical use and uses the same RBE model concept. We also performed patient-specific measurements to validate the dose model in clinical situations. The physical beam model reproduces the measured absolute dose at the center of the SOBP as a function of field size, range, and SOBP width and reproduces the dose profiles for a 6-mm SOBP in water. However, the profiles calculated for a heterogeneous phantom have some limitations in predicting the carbon-ion-beam dose, although the biological doses agreed well with the values calculated by the validated TPS. Using this dose model for fast-raster scanning, we successfully treated more than 900 patients from October 2018 to October 2020, with an acceptable agreement between the TPS-calculated and measured dose distributions. We conclude that the newly developed TPS can be used clinically with the understanding that it has limited accuracies for heterogeneous media.
在本研究中,我们报告了将商业治疗计划系统(TPS)用于快速扫描重离子束的经验。该 TPS 使用分析剂量计算算法、具有三重高斯形式的用于侧向剂量分布的铅笔束模型以及用于考虑介质中横向异质性的束分裂算法。我们采用混合束模型作为相对生物学效应(RBE)模型来计算扫描碳离子束的 RBE 值。为了验证建模的物理剂量,我们将计算结果与各种相关量的测量结果进行了比较,这些相关量是作为射野大小、射程和扩展布拉格峰(SOBP)宽度以及水的 6mm SOBP 的深度剂量和侧向剂量分布的函数。为了模拟生物剂量,我们将新开发的 TPS 计算的 RBE 值与在临床使用中并使用相同 RBE 模型概念的经过验证的 TPS 计算的 RBE 值进行了比较。我们还进行了患者特异性测量以验证临床情况下的剂量模型。物理束模型再现了 SOBP 中心处的测量绝对剂量作为射野大小、射程和 SOBP 宽度的函数,并且再现了水的 6mm SOBP 的剂量分布。然而,在预测碳离子束剂量方面,计算出的不均匀体模的剂量分布存在一些局限性,尽管生物剂量与经过验证的 TPS 计算的剂量值吻合良好。使用这种剂量模型进行快速扫描,我们从 2018 年 10 月至 2020 年 10 月成功治疗了 900 多名患者,TPS 计算的和测量的剂量分布之间具有可接受的一致性。我们的结论是,新开发的 TPS 可以在临床使用,前提是它对不均匀介质的准确性有限。