Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands.
Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
PLoS Comput Biol. 2023 Jun 23;19(6):e1011221. doi: 10.1371/journal.pcbi.1011221. eCollection 2023 Jun.
The intricate dependency structure of biological "omics" data, particularly those originating from longitudinal intervention studies with frequently sampled repeated measurements renders the analysis of such data challenging. The high-dimensionality, inter-relatedness of multiple outcomes, and heterogeneity in the studied systems all add to the difficulty in deriving meaningful information. In addition, the subtle differences in dynamics often deemed meaningful in nutritional intervention studies can be particularly challenging to quantify. In this work we demonstrate the use of quantitative longitudinal models within the repeated-measures ANOVA simultaneous component analysis+ (RM-ASCA+) framework to capture the dynamics in frequently sampled longitudinal data with multivariate outcomes. We illustrate the use of linear mixed models with polynomial and spline basis expansion of the time variable within RM-ASCA+ in order to quantify non-linear dynamics in a simulation study as well as in a metabolomics data set. We show that the proposed approach presents a convenient and interpretable way to systematically quantify and summarize multivariate outcomes in longitudinal studies while accounting for proper within subject dependency structures.
生物“组学”数据的复杂依赖结构,特别是那些来自于具有频繁采样重复测量的纵向干预研究的数据,使得此类数据的分析具有挑战性。高维性、多个结果的相关性以及研究系统中的异质性都增加了从中得出有意义信息的难度。此外,在营养干预研究中被认为有意义的动态差异的细微差别通常很难量化。在这项工作中,我们演示了在重复测量方差分析同时成分分析+(RM-ASCA+)框架内使用定量纵向模型来捕捉具有多变量结果的频繁采样纵向数据的动态。我们说明了在 RM-ASCA+中使用线性混合模型和时间变量的多项式和样条基扩展来量化模拟研究以及代谢组学数据集的非线性动态。我们表明,所提出的方法提供了一种方便且可解释的方法,可以系统地量化和总结纵向研究中的多变量结果,同时考虑到适当的个体内依赖结构。