Suppr超能文献

使用局部和全局深度学习网络预测多个地下水时间序列。

Forecasting Multiple Groundwater Time Series with Local and Global Deep Learning Networks.

机构信息

Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia.

School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2170, Australia.

出版信息

Int J Environ Res Public Health. 2022 Apr 22;19(9):5091. doi: 10.3390/ijerph19095091.

Abstract

Time series data from environmental monitoring stations are often analysed with machine learning methods on an individual basis, however recent advances in the machine learning field point to the advantages of incorporating multiple related time series from the same monitoring network within a 'global' model. This approach provides the opportunity for larger training data sets, allows information to be shared across the network, leading to greater generalisability, and can overcome issues encountered in the individual time series, such as small datasets or missing data. We present a case study involving the analysis of 165 time series from groundwater monitoring wells in the Namoi region of Australia. Analyses of the multiple time series using a variety of different aggregations are compared and contrasted (with single time series, subsets, and all of the time series together), using variations of the multilayer perceptron (MLP), self-organizing map (SOM), long short-term memory (LSTM), and a recently developed LSTM extension (DeepAR) that incorporates autoregressive terms and handles multiple time series. The benefits, in terms of prediction performance, of these various approaches are investigated, and challenges such as differing measurement frequencies and variations in temporal patterns between the time series are discussed. We conclude with some discussion regarding recommendations and opportunities associated with using networks of environmental data to help inform future resource-related decision making.

摘要

时间序列数据通常是从环境监测站使用机器学习方法进行分析的,但机器学习领域的最新进展表明,将同一监测网络中的多个相关时间序列纳入“全局”模型中具有优势。这种方法提供了更大的训练数据集的机会,允许信息在网络中共享,从而提高了通用性,并可以克服单个时间序列中遇到的问题,例如小数据集或缺失数据。我们提出了一个案例研究,涉及对澳大利亚纳莫伊地区地下水监测井的 165 个时间序列的分析。使用多层感知机 (MLP)、自组织映射 (SOM)、长短期记忆 (LSTM) 和最近开发的包含自回归项和处理多个时间序列的 LSTM 扩展 (DeepAR) 的各种变体,比较和对比了使用多种不同聚合方法对多个时间序列进行的分析(与单个时间序列、子集和所有时间序列一起)。研究了这些不同方法在预测性能方面的优势,并讨论了测量频率不同和时间序列之间时间模式变化等挑战。最后,我们讨论了使用环境数据网络来帮助为未来与资源相关的决策提供信息的建议和机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5318/9105407/c6836de53916/ijerph-19-05091-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验