Suppr超能文献

评估算法和人工智能采用的潜力,以实现更安全、更快的药物管理,从而颠覆患者的初级护理:系统评价方案。

Assessing the potentiality of algorithms and artificial intelligence adoption to disrupt patient primary care with a safer and faster medication management: a systematic review protocol.

机构信息

Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.

Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.

出版信息

BMJ Open. 2022 May 17;12(5):e057399. doi: 10.1136/bmjopen-2021-057399.

Abstract

INTRODUCTION

In primary care, almost 75% of outpatient visits by family doctors and general practitioners involve continuation or initiation of drug therapy. Due to the enormous amount of drugs used by outpatients in unmonitored situations, the potential risk of adverse events due to an error in the use or prescription of drugs is much higher than in a hospital setting. Artificial intelligence (AI) application can help healthcare professionals to take charge of patient safety by improving error detection, patient stratification and drug management. The aim is to investigate the impact of AI algorithms on drug management in primary care settings and to compare AI or algorithms with standard clinical practice to define the medication fields where a technological support could lead to better results.

METHODS AND ANALYSIS

A systematic review and meta-analysis of literature will be conducted querying PubMed, Cochrane and ISI Web of Science from the inception to December 2021. The primary outcome will be the reduction of medication errors obtained by AI application. The search strategy and the study selection will be conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and the population, intervention, comparator and outcome framework. Quality of included studies will be appraised adopting the quality assessment tool for observational cohort and cross-sectional studies for non-randomised controlled trials as well as the quality assessment of controlled intervention studies of National Institute of Health for randomised controlled trials.

ETHICS AND DISSEMINATION

Formal ethical approval is not required since no human beings are involved. The results will be disseminated widely through peer-reviewed publications.

摘要

简介

在基层医疗中,家庭医生和全科医生接诊的近 75%的门诊患者都涉及药物治疗的延续或启动。由于门诊患者在不受监测的情况下使用的药物数量巨大,因此由于药物使用或处方错误而导致不良事件的潜在风险远高于医院环境。人工智能(AI)应用可以通过提高错误检测、患者分层和药物管理来帮助医疗保健专业人员负责患者安全。目的是调查 AI 算法对基层医疗环境中药物管理的影响,并将 AI 或算法与标准临床实践进行比较,以确定在哪些药物管理领域技术支持可以带来更好的结果。

方法和分析

将对从成立到 2021 年 12 月的 PubMed、Cochrane 和 ISI Web of Science 进行文献的系统评价和荟萃分析。主要结果将是通过 AI 应用减少药物错误。搜索策略和研究选择将根据系统评价和荟萃分析的首选报告项目以及人群、干预、比较和结果框架进行。将采用非随机对照试验的观察性队列和横断面研究的质量评估工具以及国立卫生研究院的随机对照试验的对照干预研究的质量评估来评估纳入研究的质量。

伦理和传播

由于不涉及人类,因此不需要正式的伦理批准。研究结果将通过同行评审出版物广泛传播。

相似文献

5
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

7
Artificial intelligence in healthcare: past, present and future.人工智能在医疗保健中的应用:过去、现在和未来。
Stroke Vasc Neurol. 2017 Jun 21;2(4):230-243. doi: 10.1136/svn-2017-000101. eCollection 2017 Dec.
9
Medication errors: an overview for clinicians.药物错误:临床医生须知。
Mayo Clin Proc. 2014 Aug;89(8):1116-25. doi: 10.1016/j.mayocp.2014.05.007. Epub 2014 Jun 27.
10
Meta-analysis: Its strengths and limitations.荟萃分析:其优势与局限性。
Cleve Clin J Med. 2008 Jun;75(6):431-9. doi: 10.3949/ccjm.75.6.431.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验