Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, Basel, Switzerland.
CPT Pharmacometrics Syst Pharmacol. 2022 Jun;11(6):745-754. doi: 10.1002/psp4.12786. Epub 2022 May 18.
Pharmacometrics and the application of population pharmacokinetic (PK) modeling play a crucial role in clinical pharmacology. These methods, which describe data with well-defined equations and estimate physiologically interpretable parameters, have not changed substantially during the past decades. Although the methods have proven their usefulness, they are often resource intensive and require a high level of expertise. We investigated whether a method based on artificial neural networks (ANNs) may provide an alternative approach for the prediction of concentration-time curve to supplement the gold standard methods. In this work, we used simulated data to overcome the requirement for a large clinical training data set, implemented a pharmacologically reasonable network architecture to improve extrapolation to different dosing schemes, and used transfer learning to quickly adapt the predictions to new patient groups. We demonstrate that ANNs are able to learn the shape of concentration-time curves and make individual predictions based on a short sequence of PK measurements. Furthermore, an ANN trained on simulated data was applied to real clinical data and was demonstrated to extrapolate to different dosing schemes. We also adapted the ANN trained on simulated healthy subjects to simulated hepatic impaired patients through transfer learning. In summary, we demonstrate how ANNs could be leveraged in a PK workflow to efficiently make individual concentration-time predictions, and we discuss the current limitations and advantages of such an ANN-based method.
药物代谢动力学和群体药代动力学(PK)模型的应用在临床药理学中起着至关重要的作用。这些方法使用定义良好的方程来描述数据,并估计具有生理学意义的可解释参数,在过去几十年中并没有发生实质性的变化。尽管这些方法已经证明了它们的有用性,但它们通常需要大量的资源,并且需要高水平的专业知识。我们研究了基于人工神经网络(ANNs)的方法是否可以提供一种替代方法来补充金标准方法,用于预测浓度-时间曲线。在这项工作中,我们使用模拟数据来克服对大型临床训练数据集的需求,实现了一种药理学合理的网络架构,以提高对不同给药方案的外推能力,并使用迁移学习来快速将预测适应新的患者群体。我们证明了 ANNs 能够学习浓度-时间曲线的形状,并根据 PK 测量的短序列进行个体预测。此外,我们还将基于模拟数据训练的 ANN 应用于真实的临床数据,并证明它可以外推到不同的给药方案。我们还通过迁移学习将基于模拟健康受试者训练的 ANN 应用于模拟肝损伤患者。总之,我们展示了如何在 PK 工作流程中利用 ANNs 来高效地进行个体浓度-时间预测,并讨论了这种基于 ANN 的方法的当前局限性和优势。