Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
Nat Commun. 2022 May 19;13(1):2801. doi: 10.1038/s41467-022-30396-3.
T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells. Mechanistically, inhibition of OxPhos induces a metabolic reprogramming into glutaminolysis. We show that pharmacological blockade of OxPhos combined with inducible knock-down of glutaminase, the key glutamine enzyme, confers synthetic lethality in mice harboring NOTCH1-mutated T-ALL. We leverage on this synthetic lethal interaction to demonstrate that IACS-010759 in combination with chemotherapy containing L-asparaginase, an enzyme that uncovers the glutamine dependency of leukemic cells, causes reduced glutaminolysis and profound tumor reduction in pre-clinical models of human T-ALL. In summary, this metabolic dependency of T-ALL on OxPhos provides a rational therapeutic target.
T 细胞急性淋巴细胞白血病(T-ALL)通常由 NOTCH1 的激活突变驱动,这些突变促进谷氨酰胺氧化。在这里,我们确定氧化磷酸化(OxPhos)是白血病细胞存活的关键途径,并在白血病前模型和白血病模型中证明了 NOTCH1、升高的 OxPhos 基因表达与获得性化疗耐药之间的直接关系。用 IACS-010759(一种线粒体复合物 I 抑制剂)破坏 OxPhos,通过诱导代谢关闭和 NOTCH1 突变型和 NOTCH1-wt T-ALL 细胞中的氧化还原失衡,导致强烈的生长抑制。从机制上讲,抑制 OxPhos 会诱导代谢重编程为谷氨酰胺分解。我们表明,OxPhos 的药理学阻断与诱导性敲低谷氨酰胺酶(关键的谷氨酰胺酶)联合使用,在携带 NOTCH1 突变的 T-ALL 小鼠中可导致合成致死性。我们利用这种合成致死性相互作用证明,IACS-010759 与含有 L-天冬酰胺酶的化疗联合使用,L-天冬酰胺酶可揭示白血病细胞对谷氨酰胺的依赖性,可减少谷氨酰胺分解并在人类 T-ALL 的临床前模型中显著减少肿瘤。总之,T-ALL 对 OxPhos 的这种代谢依赖性为合理的治疗靶标提供了依据。