Suppr超能文献

使用无风格自动编码器对放射肿瘤学磁共振成像中与扫描仪相关的对比度变化进行协调。

Harmonisation of scanner-dependent contrast variations in magnetic resonance imaging for radiation oncology, using style-blind auto-encoders.

作者信息

Fatania Kavi, Clark Anna, Frood Russell, Scarsbrook Andrew, Al-Qaisieh Bashar, Currie Stuart, Nix Michael

机构信息

Department of Radiology, St James University Hospital Trust, Beckett Street, Leeds LS9 7TF, UK.

Leeds Cancer Centre, Bexley Wing, St James University Hospital Trust, Beckett Street, Leeds LS9 7TF, UK.

出版信息

Phys Imaging Radiat Oncol. 2022 May 17;22:115-122. doi: 10.1016/j.phro.2022.05.005. eCollection 2022 Apr.

Abstract

BACKGROUND AND PURPOSE

Magnetic Resonance Imaging (MRI) exhibits scanner dependent contrast, which limits generalisability of radiomics and machine-learning for radiation oncology. Current deep-learning harmonisation requires paired data, retraining for new scanners and often suffers from geometry-shift which alters anatomical information. The aim of this study was to investigate style-blind auto-encoders for MRI harmonisation to accommodate unpaired training data, avoid geometry-shift and harmonise data from previously unseen scanners.

MATERIALS AND METHODS

A style-blind auto-encoder, using adversarial classification on the latent-space, was designed for MRI harmonisation. The public CC359 T1-w MRI brain dataset includes six scanners (three manufacturers, two field strengths), of which five were used for training. MRI from all six (including one unseen) scanner were harmonised to common contrast. Harmonisation extent was quantified via Kolmogorov-Smirnov testing of residual scanner dependence of 3D radiomic features, and compared to WhiteStripe normalisation. Anatomical content preservation was measured through change in structural similarity index on contrast-cycling (δSSIM).

RESULTS

The percentage of radiomics features showing statistically significant scanner-dependence was reduced from 41% (WhiteStripe) to 16% for white matter and from 39% to 27% for grey matter. δSSIM < 0.0025 on harmonisation and de-harmonisation indicated excellent anatomical content preservation.

CONCLUSIONS

Our method harmonised MRI contrast effectively, preserved critical anatomical details at high fidelity, trained on unpaired data and allowed zero-shot harmonisation. Robust and clinically translatable harmonisation of MRI will enable generalisable radiomic and deep-learning models for a range of applications, including radiation oncology treatment stratification, planning and response monitoring.

摘要

背景与目的

磁共振成像(MRI)表现出依赖扫描仪的对比度,这限制了放射组学和机器学习在放射肿瘤学中的通用性。当前的深度学习归一化需要配对数据,针对新扫描仪进行重新训练,并且经常受到几何移位的影响,从而改变解剖信息。本研究的目的是研究用于MRI归一化的风格盲自动编码器,以适应未配对的训练数据,避免几何移位,并对来自以前未见过的扫描仪的数据进行归一化。

材料与方法

设计了一种在潜在空间上使用对抗分类的风格盲自动编码器,用于MRI归一化。公共CC359 T1加权MRI脑数据集包括六台扫描仪(三个制造商,两种场强),其中五台用于训练。将来自所有六台(包括一台未见过的)扫描仪的MRI归一化为共同的对比度。通过对3D放射组学特征的残余扫描仪依赖性进行柯尔莫哥洛夫-斯米尔诺夫检验来量化归一化程度,并与WhiteStripe归一化进行比较。通过对比循环时结构相似性指数的变化(δSSIM)来测量解剖内容的保留情况。

结果

显示出统计学上显著的扫描仪依赖性的放射组学特征百分比,白质从41%(WhiteStripe)降至16%,灰质从39%降至27%。归一化和解归一化时的δSSIM < 0.0025表明解剖内容保留良好。

结论

我们的方法有效地归一化了MRI对比度,以高保真度保留了关键的解剖细节,在未配对的数据上进行训练,并实现了零样本归一化。MRI的强大且可临床转化的归一化将使一系列应用的通用放射组学和深度学习模型成为可能,包括放射肿瘤学治疗分层、计划和反应监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb95/9127401/a95ba9f78db6/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验