Suppr超能文献

用于扩散磁共振成像协调的扫描仪不变表示。

Scanner invariant representations for diffusion MRI harmonization.

作者信息

Moyer Daniel, Ver Steeg Greg, Tax Chantal M W, Thompson Paul M

机构信息

Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA.

出版信息

Magn Reson Med. 2020 Oct;84(4):2174-2189. doi: 10.1002/mrm.28243. Epub 2020 Apr 6.

Abstract

PURPOSE

In the present work, we describe the correction of diffusion-weighted MRI for site and scanner biases using a novel method based on invariant representation.

THEORY AND METHODS

Pooled imaging data from multiple sources are subject to variation between the sources. Correcting for these biases has become very important as imaging studies increase in size and multi-site cases become more common. We propose learning an intermediate representation invariant to site/protocol variables, a technique adapted from information theory-based algorithmic fairness; by leveraging the data processing inequality, such a representation can then be used to create an image reconstruction that is uninformative of its original source, yet still faithful to underlying structures. To implement this, we use a deep learning method based on variational auto-encoders (VAE) to construct scanner invariant encodings of the imaging data.

RESULTS

To evaluate our method, we use training data from the 2018 MICCAI Computational Diffusion MRI (CDMRI) Challenge Harmonization dataset. Our proposed method shows improvements on independent test data relative to a recently published baseline method on each subtask, mapping data from three different scanning contexts to and from one separate target scanning context.

CONCLUSIONS

As imaging studies continue to grow, the use of pooled multi-site imaging will similarly increase. Invariant representation presents a strong candidate for the harmonization of these data.

摘要

目的

在本研究中,我们描述了一种基于不变表示的新方法,用于校正扩散加权磁共振成像(MRI)中的扫描部位和扫描仪偏差。

理论与方法

来自多个来源的汇总成像数据在不同来源之间存在差异。随着成像研究规模的扩大以及多部位病例变得更加常见,校正这些偏差变得非常重要。我们提出学习一种对扫描部位/协议变量不变的中间表示,这是一种基于信息论的算法公平性改编的技术;通过利用数据处理不等式,这样的表示随后可用于创建一种图像重建,该重建对其原始来源无信息,但仍忠实于基础结构。为实现这一点,我们使用基于变分自编码器(VAE)的深度学习方法来构建成像数据的扫描仪不变编码。

结果

为评估我们的方法,我们使用了2018年医学图像计算方法国际会议(MICCAI)计算扩散MRI(CDMRI)挑战协调数据集的训练数据。相对于最近发表的基线方法,我们提出的方法在每个子任务的独立测试数据上均有改进,将来自三种不同扫描环境的数据映射到一个单独的目标扫描环境以及从该目标扫描环境映射出来。

结论

随着成像研究的持续发展,汇总的多部位成像的使用也将相应增加。不变表示是这些数据协调的有力候选方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9983/7384065/91c529e50702/MRM-84-2174-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验