Suppr超能文献

基于监测、流行病学和最终结果(SEER)数据库的恶性小肠肿瘤生存深度学习模型的开发研究

Development of a Deep Learning Model for Malignant Small Bowel Tumors Survival: A SEER-Based Study.

作者信息

Yin Minyue, Lin Jiaxi, Liu Lu, Gao Jingwen, Xu Wei, Yu Chenyan, Qu Shuting, Liu Xiaolin, Qian Lijuan, Xu Chunfang, Zhu Jinzhou

机构信息

Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.

Suzhou Clinical Center of Digestive Diseases, Suzhou 215006, China.

出版信息

Diagnostics (Basel). 2022 May 17;12(5):1247. doi: 10.3390/diagnostics12051247.

Abstract

Background This study aims to explore a deep learning (DL) algorithm for developing a prognostic model and perform survival analyses in SBT patients. Methods The demographic and clinical features of patients with SBTs were extracted from the Surveillance, Epidemiology and End Results (SEER) database. We randomly split the samples into the training set and the validation set at 7:3. Cox proportional hazards (Cox-PH) analysis and the DeepSurv algorithm were used to develop models. The performance of the Cox-PH and DeepSurv models was evaluated using receiver operating characteristic curves, calibration curves, C-statistics and decision-curve analysis (DCA). A Kaplan−Meier (K−M) survival analysis was performed for further explanation on prognostic effect of the Cox-PH model. Results The multivariate analysis demonstrated that seven variables were associated with cancer-specific survival (CSS) (all p < 0.05). The DeepSurv model showed better performance than the Cox-PH model (C-index: 0.871 vs. 0.866). The calibration curves and DCA revealed that the two models had good discrimination and calibration. Moreover, patients with ileac malignancy and N2 stage disease were not responding to surgery according to the K−M analysis. Conclusions This study reported a DeepSurv model that performed well in CSS in SBT patients. It might offer insights into future research to explore more DL algorithms in cohort studies.

摘要

背景 本研究旨在探索一种深度学习(DL)算法,以开发预后模型并对小肠腺癌(SBT)患者进行生存分析。方法 从小肠腺癌患者的监测、流行病学和最终结果(SEER)数据库中提取人口统计学和临床特征。我们以7:3的比例将样本随机分为训练集和验证集。使用Cox比例风险(Cox-PH)分析和DeepSurv算法来开发模型。使用受试者工作特征曲线、校准曲线、C统计量和决策曲线分析(DCA)评估Cox-PH和DeepSurv模型的性能。进行Kaplan-Meier(K-M)生存分析以进一步解释Cox-PH模型的预后效果。结果 多变量分析表明,七个变量与癌症特异性生存(CSS)相关(所有p<0.05)。DeepSurv模型表现优于Cox-PH模型(C指数:0.871对0.866)。校准曲线和DCA显示这两个模型具有良好的区分度和校准度。此外,根据K-M分析,患有回肠恶性肿瘤和N2期疾病的患者对手术无反应。结论 本研究报告了一种在小肠腺癌患者的CSS方面表现良好的DeepSurv模型。它可能为未来在队列研究中探索更多DL算法的研究提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/981c/9141623/effd8cf9454a/diagnostics-12-01247-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验