Computer Science Department, Universitá di Torino, Turin, Italy.
Laboratorio InfoLife, Consorzio Interuniversitario Nazionale per l'Informatica (CINI), Rome, Italy.
Sci Rep. 2024 Aug 19;14(1):19220. doi: 10.1038/s41598-024-69660-5.
Predicting epidemic evolution is essential for making informed decisions and guiding the implementation of necessary countermeasures. Computational models are vital tools that provide insights into illness progression and enable early detection, proactive intervention, and targeted preventive measures. This paper introduces Sybil, a framework that integrates machine learning and variant-aware compartmental models, leveraging a fusion of data-centric and analytic methodologies. To validate and evaluate Sybil's forecasts, we employed COVID-19 data from several European and U.S. states. The dataset included the number of new and recovered cases, fatalities, and variant presence over time. We evaluate the forecasting precision of Sybil in periods in which there is a change in the trend of the pandemic evolution or a new variant appears. Results demonstrate that Sybil outperforms conventional data-centric approaches, being able to forecast accurately the changes in the trend, the magnitude of these changes, and the future prevalence of new variants.
预测疫情的演变对于做出明智的决策和指导实施必要的对策至关重要。计算模型是提供疾病进展洞察并实现早期检测、主动干预和有针对性的预防措施的重要工具。本文介绍了 Sybil,这是一个集成机器学习和变体感知房室模型的框架,利用了数据中心和分析方法的融合。为了验证和评估 Sybil 的预测,我们使用了来自欧洲和美国几个州的 COVID-19 数据。该数据集包括随着时间的推移新病例和已恢复病例、死亡人数以及变体存在的数量。我们评估了 Sybil 在疫情演变趋势发生变化或出现新变体的时期的预测精度。结果表明,Sybil 优于传统的数据中心方法,能够准确预测趋势的变化、这些变化的幅度以及新变体的未来流行程度。