Suppr超能文献

SDE-YOLO:一种用于血细胞检测的新方法

SDE-YOLO: A Novel Method for Blood Cell Detection.

作者信息

Wu Yonglin, Gao Dongxu, Fang Yinfeng, Xu Xue, Gao Hongwei, Ju Zhaojie

机构信息

School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110158, China.

School of Computing, University of Portsmouth, Portsmouth PO13HE, UK.

出版信息

Biomimetics (Basel). 2023 Sep 1;8(5):404. doi: 10.3390/biomimetics8050404.

Abstract

This paper proposes an improved target detection algorithm, SDE-YOLO, based on the YOLOv5s framework, to address the low detection accuracy, misdetection, and leakage in blood cell detection caused by existing single-stage and two-stage detection algorithms. Initially, the Swin Transformer is integrated into the back-end of the backbone to extract the features in a better way. Then, the 32 × 32 network layer in the path-aggregation network (PANet) is removed to decrease the number of parameters in the network while increasing its accuracy in detecting small targets. Moreover, PANet substitutes traditional convolution with depth-separable convolution to accurately recognize small targets while maintaining a fast speed. Finally, replacing the complete intersection over union (CIOU) loss function with the Euclidean intersection over union (EIOU) loss function can help address the imbalance of positive and negative samples and speed up the convergence rate. The SDE-YOLO algorithm achieves a mAP of 99.5%, 95.3%, and 93.3% on the BCCD blood cell dataset for white blood cells, red blood cells, and platelets, respectively, which is an improvement over other single-stage and two-stage algorithms such as SSD, YOLOv4, and YOLOv5s. The experiment yields excellent results, and the algorithm detects blood cells very well. The SDE-YOLO algorithm also has advantages in accuracy and real-time blood cell detection performance compared to the YOLOv7 and YOLOv8 technologies.

摘要

本文提出了一种基于YOLOv5s框架的改进目标检测算法SDE-YOLO,以解决现有单阶段和两阶段检测算法在血细胞检测中存在的检测精度低、误检和漏检问题。首先,将Swin Transformer集成到主干网络的后端,以更好地提取特征。然后,去除路径聚合网络(PANet)中的32×32网络层,以减少网络参数数量,同时提高其检测小目标的精度。此外,PANet用深度可分离卷积替代传统卷积,在保持快速速度的同时准确识别小目标。最后,用欧几里得交并比(EIOU)损失函数替代完全交并比(CIOU)损失函数,有助于解决正负样本不平衡问题并加快收敛速度。SDE-YOLO算法在BCCD血细胞数据集上对白细胞、红细胞和血小板的平均精度均值(mAP)分别达到了99.5%、95.3%和93.3%,优于SSD、YOLOv4和YOLOv5s等其他单阶段和两阶段算法。实验取得了优异的结果,该算法对血细胞的检测效果很好。与YOLOv7和YOLOv8技术相比,SDE-YOLO算法在血细胞检测精度和实时性能方面也具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/842d/10526168/ba52e37a96f1/biomimetics-08-00404-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验