Suppr超能文献

一维多点局部三元模式:一种用于分析翻转学习教学法中学生认知参与度的新型特征提取方法。

1D Multi-Point Local Ternary Pattern: A Novel Feature Extraction Method for Analyzing Cognitive Engagement of students in Flipped Learning Pedagogy.

作者信息

Shaw Rabi, Mohanty Chinmay, Patra Bidyut Kr, Pradhan Animesh

机构信息

Department of Computer Science and Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008 India.

出版信息

Cognit Comput. 2022 May 26:1-14. doi: 10.1007/s12559-022-10023-5.

Abstract

Flipped learning is a blended learning method based on academic engagement of students online (outside class) and offline (inside class). In this learning pedagogy, students receive lesson any time from lecture videos pre-loaded on digital platform at their convenience places and it is followed by in-classroom activities such as doubt clearing, problem solving, However, students are constantly exposed to high levels of distraction in this age of the Internet. Therefore, it is hard for an instructor to know whether a student has paid attention while watching pre-loaded lecture video. In order to analyze attention level of individual students, captured brain signal or electroencephalogram (EEG) of students can be utilized. In this study, we utilize a popular feature extraction technique called Local Binary Pattern (LBP) and improvise it to develop an enhanced feature selection method. The adapted feature selection method termed as 1D Multi-Point Local Ternary Pattern (1D MP-LTP) is used to extract unique features from collected electroencephalogram (EEG) signals. Standard classification techniques are exploited to classify the attention level of students. Experiments are conducted with the data captured at Intelligent Data Analysis Lab, NIT Rourkela, to show effectiveness of the proposed feature extraction technique. The proposed 1D Multi-Point Local Ternary Pattern (1D MP-LTP)-based classification techniques outperform traditional and state-of-the-art classification techniques using LBP. This research can be helpful for instructors to identify students who need special care for improving their learning ability. Researchers in educational technology can extend this work by adopting this methodology in other online teaching pedagogy such as Massive Open Online Courses (MOOC).

摘要

翻转课堂是一种混合式学习方法,基于学生在在线(课外)和离线(课内)的学术参与度。在这种教学方法中,学生可以在方便的地方随时从数字平台上预先加载的讲座视频中获取课程内容,随后是课堂活动,如答疑、解决问题等。然而,在这个互联网时代,学生不断受到高水平的干扰。因此,教师很难知道学生在观看预先加载的讲座视频时是否集中了注意力。为了分析单个学生的注意力水平,可以利用捕捉到的学生脑信号或脑电图(EEG)。在本研究中,我们利用一种流行的特征提取技术——局部二值模式(LBP),并对其进行改进,以开发一种增强的特征选择方法。改进后的特征选择方法称为一维多点局部三值模式(1D MP-LTP),用于从收集的脑电图(EEG)信号中提取独特特征。利用标准分类技术对学生的注意力水平进行分类。我们在印度国家技术学院罗尔克拉分校的智能数据分析实验室采集的数据上进行了实验,以证明所提出的特征提取技术的有效性。所提出的基于一维多点局部三值模式(1D MP-LTP)的分类技术优于使用LBP的传统和最新分类技术。这项研究有助于教师识别那些需要特别关注以提高学习能力的学生。教育技术领域的研究人员可以通过在其他在线教学方法(如大规模开放在线课程(MOOC))中采用这种方法来扩展这项工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82bf/9132764/cc008a0e9d6c/12559_2022_10023_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验