Suppr超能文献

一种基于F变换的新型新冠病毒肺炎分类方法。

A novel Covid-19 and pneumonia classification method based on F-transform.

作者信息

Tuncer Turker, Ozyurt Fatih, Dogan Sengul, Subasi Abdulhamit

机构信息

Department of Digital Forensics Engineering, Firat University, Elazig, 23000, Turkey.

Department of Software Engineering, Firat University, Elazig, 23000, Turkey.

出版信息

Chemometr Intell Lab Syst. 2021 Mar 15;210:104256. doi: 10.1016/j.chemolab.2021.104256. Epub 2021 Jan 29.

Abstract

Nowadays, Covid-19 is the most important disease that affects daily life globally. Therefore, many methods are offered to fight against Covid-19. In this paper, a novel fuzzy tree classification approach was introduced for Covid-19 detection. Since Covid-19 disease is similar to pneumonia, three classes of data sets such as Covid-19, pneumonia, and normal chest x-ray images were employed in this study. A novel machine learning model, which is called the exemplar model, is presented by using this dataset. Firstly, fuzzy tree transformation is applied to each used chest image, and 15 images (3-level F-tree is constructed in this work) are obtained from a chest image. Then exemplar division is applied to these images. A multi-kernel local binary pattern (MKLBP) is applied to each exemplar and image to generate features. Most valuable features are selected using the iterative neighborhood component (INCA) feature selector. INCA selects the most distinctive 616 features, and these features are forwarded to 16 conventional classifiers in five groups. These groups are decision tree (DT), linear discriminant (LD), support vector machine (SVM), ensemble, and k-nearest neighbor (k-NN). The best-resulted classifier is Cubic SVM, and it achieved 97.01% classification accuracy for this dataset.

摘要

如今,新冠肺炎是影响全球日常生活的最重要疾病。因此,人们提出了许多对抗新冠肺炎的方法。在本文中,引入了一种新颖的模糊树分类方法用于新冠肺炎检测。由于新冠肺炎与肺炎相似,本研究采用了三类数据集,即新冠肺炎、肺炎和正常胸部X光图像。利用该数据集提出了一种名为范例模型的新型机器学习模型。首先,对每张使用的胸部图像进行模糊树变换,从一张胸部图像中获得15张图像(本工作构建了3级F树)。然后对这些图像进行范例划分。将多核局部二值模式(MKLBP)应用于每个范例和图像以生成特征。使用迭代邻域成分(INCA)特征选择器选择最有价值的特征。INCA选择最具特色的616个特征,并将这些特征分成五组转发给16个传统分类器。这些组分别是决策树(DT)、线性判别(LD)、支持向量机(SVM)、集成学习和k近邻(k-NN)。结果最佳的分类器是立方支持向量机,对于该数据集,其分类准确率达到了97.01%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f171/7844388/15dc71eee5ab/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验