Suppr超能文献

年龄和性别对心脏磁共振成像中左心室功能、容积和轮廓的全自动深度学习评估的影响。

Effect of age and sex on fully automated deep learning assessment of left ventricular function, volumes, and contours in cardiac magnetic resonance imaging.

机构信息

Department of Internal Medicine, Northwestern University, Chicago, IL, USA.

Department of Radiology, Northwestern University, 737 N. Michigan Avenue, Suite 1600, Chicago, IL, 60611, USA.

出版信息

Int J Cardiovasc Imaging. 2021 Dec;37(12):3539-3547. doi: 10.1007/s10554-021-02326-9. Epub 2021 Jun 29.

Abstract

Deep learning algorithms for left ventricle (LV) segmentation are prone to bias towards the training dataset. This study assesses sex- and age-dependent performance differences when using deep learning for automatic LV segmentation. Retrospective analysis of 100 healthy subjects undergoing cardiac MRI from 2012 to 2018, with 10 men and women in the following age groups: 18-30, 31-40, 41-50, 51-60, and 61-80 years old. Subjects underwent 1.5 T, 2D CINE SSFP MRI. 35 pathologic cases from local clinical exams and the SCMR 2015 consensus contours dataset were also analyzed. A fully convolutional network (FCN) similar to U-Net trained on the U.K. Biobank was used to automatically segment LV endocardial and epicardial contours. FCN and manual segmentation were compared using Dice metrics and measurements of end-diastolic volume (EDV), end-systolic volume (ESV), mass (LVM), and ejection fraction (LVEF). Paired t-tests and linear regressions were used to analyze measurement differences with respect to sex and age. Dice metrics (median ± IQR) for n = 135 cases were 0.94 ± 0.04/0.87 ± 0.10 (ED endocardium/ES endocardium). Measurement biases (mean ± SD) among the healthy cohort were - 0.3 ± 10.1 mL for EDV, - 6.7 ± 9.6 mL for ESV, 4.6 ± 6.4% for LVEF, and - 2.2 ± 11.0 g for LVM; biases were independent of sex and age. Biases among the 35 pathologic cases were 0.1 ± 19 mL for EDV, - 4.8 ± 19 mL for ESV, 2.0 ± 7.6% for LVEF, and 1.0 ± 20 g for LVM. In conclusion, automatic segmentation by the Biobank-trained FCN was independent of age and sex. Improvements in end-systolic basal slice detection are needed to decrease bias and improve precision in ESV and LVEF.

摘要

深度学习算法在左心室 (LV) 分割中容易受到训练数据集的影响。本研究评估了使用深度学习进行自动 LV 分割时性别和年龄依赖性的性能差异。回顾性分析了 2012 年至 2018 年期间接受心脏 MRI 的 100 名健康受试者,其中 10 名男性和女性分别来自以下年龄组:18-30 岁、31-40 岁、41-50 岁、51-60 岁和 61-80 岁。受试者接受了 1.5T、2D CINE SSFP MRI。还分析了来自当地临床检查和 SCMR 2015 共识轮廓数据集的 35 例病理病例。使用类似于 U-Net 的全卷积网络 (FCN) 在英国生物银行上进行训练,用于自动分割 LV 心内膜和心外膜轮廓。使用 Dice 度量和舒张末期容积 (EDV)、收缩末期容积 (ESV)、质量 (LVM) 和射血分数 (LVEF) 的测量值比较了 FCN 和手动分割。使用配对 t 检验和线性回归分析了性别和年龄对测量差异的影响。对于 n = 135 例病例,Dice 度量值 (中位数 ± IQR) 为 0.94 ± 0.04/0.87 ± 0.10 (ED 心内膜/ES 心内膜)。健康队列中测量的偏差 (平均值 ± SD) 为 -0.3 ± 10.1 mL 用于 EDV,-6.7 ± 9.6 mL 用于 ESV,4.6 ± 6.4% 用于 LVEF,-2.2 ± 11.0 g 用于 LVM;偏差与性别和年龄无关。35 例病理病例的偏差为 -0.1 ± 19 mL 用于 EDV,-4.8 ± 19 mL 用于 ESV,2.0 ± 7.6% 用于 LVEF,1.0 ± 20 g 用于 LVM。总之,由生物银行训练的 FCN 进行的自动分割与年龄和性别无关。需要改进收缩末期基底部切片检测,以降低 ESV 和 LVEF 的偏差并提高精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验