Suppr超能文献

利用深度学习从临床图像和患者信息中进行皮肤病自动诊断。

Automatic skin disease diagnosis using deep learning from clinical image and patient information.

作者信息

Muhaba K A, Dese K, Aga T M, Zewdu F T, Simegn G L

机构信息

Biomedical Imaging Unit School of Biomedical Engineering Jimma Institute of Technology Jimma University Jimma Ethiopia.

Department of Biomedical Engineering Kombolcha Institute of Technology Wollo University Dessie Ethiopia.

出版信息

Skin Health Dis. 2021 Nov 25;2(1):e81. doi: 10.1002/ski2.81. eCollection 2022 Mar.

Abstract

BACKGROUND

Skin diseases are the fourth most common cause of human illness which results in enormous non-fatal burden in daily life activities. They are caused by chemical, physical and biological factors. Visual assessment in combination with clinical information is the common diagnostic procedure for diseases. However, these procedures are manual, time-consuming, and require experience and excellent visual perception.

OBJECTIVES

In this study, an automated system is proposed for the diagnosis of five common skin diseases by using data from clinical images and patient information using deep learning pre-trained mobilenet-v2 model.

METHODS

Clinical images were acquired using different smartphone cameras and patient's information were collected during patient registration. Different data preprocessing and augmentation techniques were applied to boost the performance of the model prior to training.

RESULTS

A multiclass classification accuracy of 97.5%, sensitivity of 97.7% and precision of 97.7% has been achieved using the proposed technique for the common five skin disease. The results demonstrate that, the developed system provides excellent diagnosis performance for the five skin diseases.

CONCLUSION

The system has been designed as a smartphone application and it has the potential to be used as a decision support system in low resource settings, where both the expert dermatologist and the means are limited.

摘要

背景

皮肤病是人类疾病的第四大常见病因,在日常生活活动中造成巨大的非致命负担。它们由化学、物理和生物因素引起。结合临床信息的视觉评估是疾病的常见诊断程序。然而,这些程序是人工操作的,耗时且需要经验和出色的视觉感知能力。

目的

在本研究中,提出了一种自动化系统,通过使用来自临床图像的数据和患者信息,利用深度学习预训练的MobileNet - v2模型来诊断五种常见皮肤病。

方法

使用不同的智能手机摄像头采集临床图像,并在患者登记过程中收集患者信息。在训练前应用不同的数据预处理和增强技术来提高模型性能。

结果

使用所提出的技术对常见的五种皮肤病进行诊断,实现了多类分类准确率为97.5%、灵敏度为97.7%和精确率为97.7%。结果表明,所开发的系统对这五种皮肤病具有出色的诊断性能。

结论

该系统已设计为智能手机应用程序,在资源有限的环境中,当专家皮肤科医生和资源都有限时,它有潜力用作决策支持系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fa0/9060152/4ef596db3633/SKI2-2-e81-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验