Fujian Key Laboratory of Sensing and Computing for Smart City, Xiamen University, Fujian, China.
Fujian Key Laboratory of Sensing and Computing for Smart City, Xiamen University, Fujian, China.
Magn Reson Imaging. 2019 Nov;63:185-192. doi: 10.1016/j.mri.2019.07.010. Epub 2019 Jul 25.
Compressive sensing enables fast magnetic resonance imaging (MRI) reconstruction with undersampled k-space data. However, in most existing MRI reconstruction models, the whole MR image is targeted and reconstructed without taking specific tissue regions into consideration. This may fails to emphasize the reconstruction accuracy on important and region-of-interest (ROI) tissues for diagnosis. In some ROI-based MRI reconstruction models, the ROI mask is extracted by human experts in advance, which is laborious when the MRI datasets are too large. In this paper, we propose a deep neural network architecture for ROI MRI reconstruction called ROIRecNet to improve reconstruction accuracy of the ROI regions in under-sampled MRI. In the model, we obtain the ROI masks by feeding an initially reconstructed MRI from a pre-trained MRI reconstruction network (RecNet) to a pre-trained MRI segmentation network (ROINet). Then we fine-tune the RecNet with a binary weighted ℓ loss function using the produced ROI mask. The resulting ROIRecNet can offer more focus on the ROI. We test the model on the MRBrainS13 dataset with different brain tissues being ROIs. The experiment shows the proposed ROIRecNet can significantly improve the reconstruction quality of the region of interest.
压缩感知可实现欠采样 k 空间数据的快速磁共振成像 (MRI) 重建。然而,在大多数现有的 MRI 重建模型中,整个磁共振图像都是目标,并且没有考虑特定的组织区域进行重建。这可能无法强调对重要的和感兴趣区域 (ROI) 组织进行诊断的重建准确性。在一些基于 ROI 的 MRI 重建模型中,ROI 掩模是由人类专家预先提取的,当 MRI 数据集太大时,这会很费力。在本文中,我们提出了一种称为 ROIRecNet 的用于 ROI MRI 重建的深度神经网络架构,以提高欠采样 MRI 中 ROI 区域的重建准确性。在该模型中,我们通过将最初从预训练的 MRI 重建网络 (RecNet) 重建的 MRI 输入到预训练的 MRI 分割网络 (ROINet) 来获得 ROI 掩模。然后,我们使用生成的 ROI 掩模使用二进制加权ℓ损失函数对 RecNet 进行微调。所得的 ROIRecNet 可以更加关注 ROI。我们在具有不同脑组织作为 ROI 的 MRBrainS13 数据集上测试了该模型。实验表明,所提出的 ROIRecNet 可以显著提高感兴趣区域的重建质量。