Suppr超能文献

均方损失:一种用于磁共振成像重建和深度学习图像配准的对称损失函数。

⊥-loss: A symmetric loss function for magnetic resonance imaging reconstruction and image registration with deep learning.

机构信息

Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508GA, the Netherlands; Computational Imaging Group for MR Diagnostics & Therapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508GA, the Netherlands.

Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508GA, the Netherlands; Computational Imaging Group for MR Diagnostics & Therapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508GA, the Netherlands.

出版信息

Med Image Anal. 2022 Aug;80:102509. doi: 10.1016/j.media.2022.102509. Epub 2022 Jun 2.

Abstract

Convolutional neural networks (CNNs) are increasingly adopted in medical imaging, e.g., to reconstruct high-quality images from undersampled magnetic resonance imaging (MRI) acquisitions or estimate subject motion during an examination. MRI is naturally acquired in the complex domain C, obtaining magnitude and phase information in k-space. However, CNNs in complex regression tasks are almost exclusively trained to minimize the L2 loss or maximizing the magnitude structural similarity (SSIM), which are possibly not optimal as they do not take full advantage of the magnitude and phase information present in the complex domain. This work identifies that minimizing the L2 loss in the complex field has an asymmetry in the magnitude/phase loss landscape and is biased, underestimating the reconstructed magnitude. To resolve this, we propose a new loss function for regression in the complex domain called ⊥-loss, which adds a novel phase term to established magnitude loss functions, e.g., L2 or SSIM. We show ⊥-loss is symmetric in the magnitude/phase domain and has favourable properties when applied to regression in the complex domain. Specifically, we evaluate the ⊥+ℓ-loss and ⊥+SSIM-loss for complex undersampled MR image reconstruction tasks and MR image registration tasks. We show that training a model to minimize the ⊥+ℓ-loss outperforms models trained to minimize the L2 loss and results in similar performance compared to models trained to maximize the magnitude SSIM while offering high-quality phase reconstruction. Moreover, ⊥-loss is defined in R, and we apply the loss function to the R domain by learning 2D deformation vector fields for image registration. We show that a model trained to minimize the ⊥+ℓ-loss outperforms models trained to minimize the end-point error loss.

摘要

卷积神经网络 (CNN) 在医学成像中越来越受欢迎,例如,从欠采样磁共振成像 (MRI) 采集重建高质量图像,或估计检查过程中的受试者运动。MRI 是在复数域 C 中自然采集的,在 k 空间中获得幅度和相位信息。然而,复数回归任务中的 CNN 几乎都是通过最小化 L2 损失或最大化幅度结构相似性 (SSIM) 来训练的,这可能不是最优的,因为它们没有充分利用复数域中存在的幅度和相位信息。本研究发现,在复数域中最小化 L2 损失在幅度/相位损失景观中存在不对称性,并且存在偏差,低估了重建幅度。为了解决这个问题,我们提出了一种用于复数域回归的新损失函数,称为 ⊥-loss,它在现有的幅度损失函数(例如 L2 或 SSIM)中添加了一个新的相位项。我们表明 ⊥-loss 在幅度/相位域中是对称的,并且在应用于复数域回归时具有良好的性质。具体来说,我们评估了 ⊥+ℓ-loss 和 ⊥+SSIM-loss 在复数欠采样 MRI 重建任务和 MRI 配准任务中的应用。我们表明,训练模型以最小化 ⊥+ℓ-loss 优于训练模型以最小化 L2 损失的模型,并且与训练模型以最大化幅度 SSIM 相比,性能相似,同时提供高质量的相位重建。此外,⊥-loss 在 R 中定义,我们通过学习用于图像配准的 2D 变形向量场将损失函数应用于 R 域。我们表明,以最小化 ⊥+ℓ-loss 为目标训练的模型优于以最小化端点误差损失为目标训练的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验