Suppr超能文献

寻求计算机辅助肺栓塞检测的最佳方法。

Seeking an Optimal Approach for Computer-Aided Pulmonary Embolism Detection.

作者信息

Islam Nahid Ul, Gehlot Shiv, Zhou Zongwei, Gotway Michael B, Liang Jianming

机构信息

Arizona State University, Tempe, AZ 85281, USA.

Mayo Clinic, Scottsdale, AZ 85259, USA.

出版信息

Mach Learn Med Imaging. 2021 Sep;12966:692-702. doi: 10.1007/978-3-030-87589-3_71. Epub 2021 Sep 21.

Abstract

Pulmonary embolism (PE) represents a thrombus ("blood clot"), usually originating from a lower extremity vein, that travels to the blood vessels in the lung, causing vascular obstruction and in some patients, death. This disorder is commonly diagnosed using CT pulmonary angiography (CTPA). Deep learning holds great promise for the computer-aided CTPA diagnosis (CAD) of PE. However, numerous competing methods for a given task in the deep learning literature exist, causing great confusion regarding the development of a CAD PE system. To address this confusion, we present a comprehensive analysis of competing deep learning methods applicable to PE diagnosis using CTPA at the both image and exam levels. At the image level, we compare convolutional neural networks (CNNs) with vision transformers, and contrast self-supervised learning (SSL) with supervised learning, followed by an evaluation of transfer learning compared with training from scratch. At the exam level, we focus on comparing conventional classification (CC) with multiple instance learning (MIL). Our extensive experiments consistently show: (1) transfer learning consistently boosts performance despite differences between natural images and CT scans, (2) transfer learning with SSL surpasses its supervised counterparts; (3) CNNs outperform vision transformers, which otherwise show satisfactory performance; and (4) CC is, surprisingly, superior to MIL. Compared with the state of the art, our optimal approach provides an AUC gain of 0.2% and 1.05% for image-level and exam-level, respectively.

摘要

肺栓塞(PE)是一种血栓(“血凝块”),通常起源于下肢静脉,它会进入肺部血管,导致血管阻塞,在某些患者中甚至会导致死亡。这种疾病通常通过CT肺动脉造影(CTPA)进行诊断。深度学习在计算机辅助CTPA诊断肺栓塞(CAD)方面具有巨大潜力。然而,深度学习文献中存在众多针对给定任务的竞争方法,这给CAD肺栓塞系统的开发带来了极大的困惑。为了解决这一困惑,我们对适用于使用CTPA进行肺栓塞诊断的竞争深度学习方法在图像和检查层面进行了全面分析。在图像层面,我们将卷积神经网络(CNN)与视觉Transformer进行比较,并将自监督学习(SSL)与监督学习进行对比,随后评估迁移学习与从头开始训练的情况。在检查层面,我们重点比较传统分类(CC)与多实例学习(MIL)。我们广泛的实验一致表明:(1)尽管自然图像和CT扫描存在差异,但迁移学习始终能提高性能;(2)使用SSL的迁移学习优于其监督学习的对应方法;(3)CNN的性能优于视觉Transformer,不过视觉Transformer也表现出令人满意的性能;(4)令人惊讶的是,CC优于MIL。与现有技术相比,我们的最优方法在图像层面和检查层面的AUC分别提高了0.2%和1.05%。

相似文献

1
Seeking an Optimal Approach for Computer-Aided Pulmonary Embolism Detection.寻求计算机辅助肺栓塞检测的最佳方法。
Mach Learn Med Imaging. 2021 Sep;12966:692-702. doi: 10.1007/978-3-030-87589-3_71. Epub 2021 Sep 21.
10
Hybrid-supervised bidirectional transfer networks for computer-aided diagnosis.用于计算机辅助诊断的混合监督双向转移网络
Comput Biol Med. 2023 Oct;165:107409. doi: 10.1016/j.compbiomed.2023.107409. Epub 2023 Aug 29.

引用本文的文献

7
Benchmarking and Boosting Transformers for Medical Image Classification.用于医学图像分类的基准测试与增强变换器
Domain Adapt Represent Transf (2022). 2022 Sep;13542:12-22. doi: 10.1007/978-3-031-16852-9_2. Epub 2022 Sep 15.

本文引用的文献

2
The RSNA Pulmonary Embolism CT Dataset.RSNA 肺栓塞 CT 数据集。
Radiol Artif Intell. 2021 Jan 20;3(2):e200254. doi: 10.1148/ryai.2021200254. eCollection 2021 Mar.
5
Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis.模型起源:用于3D医学图像分析的通用自学习模型
Med Image Comput Comput Assist Interv. 2019 Oct;11767:384-393. doi: 10.1007/978-3-030-32251-9_42. Epub 2019 Oct 10.
6
Deep learning in digital pathology image analysis: a survey.深度学习在数字病理学图像分析中的应用:综述。
Front Med. 2020 Aug;14(4):470-487. doi: 10.1007/s11684-020-0782-9. Epub 2020 Jul 29.
7
Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey.基于深度神经网络的自监督视觉特征学习:综述
IEEE Trans Pattern Anal Mach Intell. 2021 Nov;43(11):4037-4058. doi: 10.1109/TPAMI.2020.2992393. Epub 2021 Oct 1.
9
Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally.用于生物医学图像分析的卷积神经网络微调:主动式与增量式
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2017 Jul;2017:4761-4772. doi: 10.1109/CVPR.2017.506. Epub 2017 Nov 9.
10
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验