Islam Nahid Ul, Gehlot Shiv, Zhou Zongwei, Gotway Michael B, Liang Jianming
Arizona State University, Tempe, AZ 85281, USA.
Mayo Clinic, Scottsdale, AZ 85259, USA.
Mach Learn Med Imaging. 2021 Sep;12966:692-702. doi: 10.1007/978-3-030-87589-3_71. Epub 2021 Sep 21.
Pulmonary embolism (PE) represents a thrombus ("blood clot"), usually originating from a lower extremity vein, that travels to the blood vessels in the lung, causing vascular obstruction and in some patients, death. This disorder is commonly diagnosed using CT pulmonary angiography (CTPA). Deep learning holds great promise for the computer-aided CTPA diagnosis (CAD) of PE. However, numerous competing methods for a given task in the deep learning literature exist, causing great confusion regarding the development of a CAD PE system. To address this confusion, we present a comprehensive analysis of competing deep learning methods applicable to PE diagnosis using CTPA at the both image and exam levels. At the image level, we compare convolutional neural networks (CNNs) with vision transformers, and contrast self-supervised learning (SSL) with supervised learning, followed by an evaluation of transfer learning compared with training from scratch. At the exam level, we focus on comparing conventional classification (CC) with multiple instance learning (MIL). Our extensive experiments consistently show: (1) transfer learning consistently boosts performance despite differences between natural images and CT scans, (2) transfer learning with SSL surpasses its supervised counterparts; (3) CNNs outperform vision transformers, which otherwise show satisfactory performance; and (4) CC is, surprisingly, superior to MIL. Compared with the state of the art, our optimal approach provides an AUC gain of 0.2% and 1.05% for image-level and exam-level, respectively.
肺栓塞(PE)是一种血栓(“血凝块”),通常起源于下肢静脉,它会进入肺部血管,导致血管阻塞,在某些患者中甚至会导致死亡。这种疾病通常通过CT肺动脉造影(CTPA)进行诊断。深度学习在计算机辅助CTPA诊断肺栓塞(CAD)方面具有巨大潜力。然而,深度学习文献中存在众多针对给定任务的竞争方法,这给CAD肺栓塞系统的开发带来了极大的困惑。为了解决这一困惑,我们对适用于使用CTPA进行肺栓塞诊断的竞争深度学习方法在图像和检查层面进行了全面分析。在图像层面,我们将卷积神经网络(CNN)与视觉Transformer进行比较,并将自监督学习(SSL)与监督学习进行对比,随后评估迁移学习与从头开始训练的情况。在检查层面,我们重点比较传统分类(CC)与多实例学习(MIL)。我们广泛的实验一致表明:(1)尽管自然图像和CT扫描存在差异,但迁移学习始终能提高性能;(2)使用SSL的迁移学习优于其监督学习的对应方法;(3)CNN的性能优于视觉Transformer,不过视觉Transformer也表现出令人满意的性能;(4)令人惊讶的是,CC优于MIL。与现有技术相比,我们的最优方法在图像层面和检查层面的AUC分别提高了0.2%和1.05%。