Suppr超能文献

利用深度学习同时预测抗体主链和侧链构象。

Simultaneous prediction of antibody backbone and side-chain conformations with deep learning.

机构信息

Department of Bioengineering, University of California, Merced, CA, United States of America.

Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, United States of America.

出版信息

PLoS One. 2022 Jun 15;17(6):e0258173. doi: 10.1371/journal.pone.0258173. eCollection 2022.

Abstract

Antibody engineering is becoming increasingly popular in medicine for the development of diagnostics and immunotherapies. Antibody function relies largely on the recognition and binding of antigenic epitopes via the loops in the complementarity determining regions. Hence, accurate high-resolution modeling of these loops is essential for effective antibody engineering and design. Deep learning methods have previously been shown to effectively predict antibody backbone structures described as a set of inter-residue distances and orientations. However, antigen binding is also dependent on the specific conformations of surface side-chains. To address this shortcoming, we created DeepSCAb: a deep learning method that predicts inter-residue geometries as well as side-chain dihedrals of the antibody variable fragment. The network requires only sequence as input, rendering it particularly useful for antibodies without any known backbone conformations. Rotamer predictions use an interpretable self-attention layer, which learns to identify structurally conserved anchor positions across several species. We evaluate the performance of the model for discriminating near-native structures from sets of decoys and find that DeepSCAb outperforms similar methods lacking side-chain context. When compared to alternative rotamer repacking methods, which require an input backbone structure, DeepSCAb predicts side-chain conformations competitively. Our findings suggest that DeepSCAb improves antibody structure prediction with accurate side-chain modeling and is adaptable to applications in docking of antibody-antigen complexes and design of new therapeutic antibody sequences.

摘要

抗体工程在医学领域越来越受欢迎,用于开发诊断和免疫疗法。抗体的功能主要依赖于通过互补决定区的环识别和结合抗原表位。因此,对这些环进行准确的高分辨率建模对于有效的抗体工程和设计至关重要。先前的研究表明,深度学习方法可以有效地预测抗体骨架结构,这些结构被描述为一组残基间的距离和取向。然而,抗原结合也依赖于表面侧链的特定构象。为了解决这一缺点,我们创建了 DeepSCAb:一种预测抗体可变片段的残基间几何形状和侧链二面角的深度学习方法。该网络仅需要序列作为输入,因此特别适用于没有任何已知骨架构象的抗体。构象预测使用可解释的自注意力层,该层学会识别跨多个物种的结构保守锚定位置。我们评估了模型从一系列诱饵中区分近天然结构的性能,发现 DeepSCAb 优于缺乏侧链上下文的类似方法。与需要输入骨架结构的替代构象重新包装方法相比,DeepSCAb 具有竞争力地预测侧链构象。我们的研究结果表明,DeepSCAb 通过准确的侧链建模提高了抗体结构预测的准确性,并适用于抗体-抗原复合物对接和新治疗性抗体序列设计的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1467/9200299/4fbd15929463/pone.0258173.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验