Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.
University of Colorado Comprehensive Cancer Center, Aurora, Colorado, United States of America.
PLoS Comput Biol. 2022 Jun 15;18(6):e1009486. doi: 10.1371/journal.pcbi.1009486. eCollection 2022 Jun.
The tumor microenvironment (TME), which characterizes the tumor and its surroundings, plays a critical role in understanding cancer development and progression. Recent advances in imaging techniques enable researchers to study spatial structure of the TME at a single-cell level. Investigating spatial patterns and interactions of cell subtypes within the TME provides useful insights into how cells with different biological purposes behave, which may consequentially impact a subject's clinical outcomes. We utilize a class of well-known spatial summary statistics, the K-function and its variants, to explore inter-cell dependence as a function of distances between cells. Using techniques from functional data analysis, we introduce an approach to model the association between these summary spatial functions and subject-level outcomes, while controlling for other clinical scalar predictors such as age and disease stage. In particular, we leverage the additive functional Cox regression model (AFCM) to study the nonlinear impact of spatial interaction between tumor and stromal cells on overall survival in patients with non-small cell lung cancer, using multiplex immunohistochemistry (mIHC) data. The applicability of our approach is further validated using a publicly available multiplexed ion beam imaging (MIBI) triple-negative breast cancer dataset.
肿瘤微环境(TME)描述了肿瘤及其周围环境,对于理解癌症的发生和发展起着至关重要的作用。近年来,成像技术的进步使研究人员能够在单细胞水平上研究 TME 的空间结构。研究 TME 中细胞亚群的空间模式和相互作用,可以深入了解具有不同生物学功能的细胞如何表现,这可能会对患者的临床结果产生影响。我们利用一类著名的空间汇总统计量,即 K 函数及其变体,来探索细胞之间的距离对细胞间依赖性的影响。我们运用功能数据分析技术,引入了一种方法来对这些汇总空间函数与个体水平结果之间的关联进行建模,同时控制了其他临床标量预测因子,如年龄和疾病阶段。特别地,我们利用加性功能 Cox 回归模型(AFCM)来研究非小细胞肺癌患者中肿瘤细胞和基质细胞之间空间相互作用对总生存期的非线性影响,使用了多重免疫组化(mIHC)数据。我们还使用了公开的多重离子束成像(MIBI)三阴性乳腺癌数据集进一步验证了我们方法的适用性。