Suppr超能文献

时间对 SARS-CoV-2 血清学检测敏感性的影响。

The influence of time on the sensitivity of SARS-CoV-2 serological testing.

机构信息

Department of Infection, Inflammation and Immunity, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.

Department of Infectious Diseases, Imperial College London, Paddington, London, W2 1NY, UK.

出版信息

Sci Rep. 2022 Jun 22;12(1):10517. doi: 10.1038/s41598-022-14351-2.

Abstract

Sensitive serological testing is essential to estimate the proportion of the population exposed or infected with SARS-CoV-2, to guide booster vaccination and to select patients for treatment with anti-SARS-CoV-2 antibodies. The performance of serological tests is usually evaluated at 14-21 days post infection. This approach fails to take account of the important effect of time on test performance after infection or exposure has occurred. We performed parallel serological testing using 4 widely used assays (a multiplexed SARS-CoV-2 Nucleoprotein (N), Spike (S) and Receptor Binding Domain assay from Meso Scale Discovery (MSD), the Roche Elecsys-Nucleoprotein (Roche-N) and Spike (Roche-S) assays and the Abbott Nucleoprotein assay (Abbott-N) on serial positive monthly samples collected as part of the Co-STARs study ( www.clinicaltrials.gov , NCT04380896) up to 200 days following infection. Our findings demonstrate the considerable effect of time since symptom onset on the diagnostic sensitivity of different assays. Using a time-to-event analysis, we demonstrated that 50% of the Abbott nucleoprotein assays will give a negative result after 175 days (median survival time 95% CI 168-185 days), compared to the better performance over time of the Roche Elecsys nucleoprotein assay (93% survival probability at 200 days, 95% CI 88-97%). Assays targeting the spike protein showed a lower decline over the follow-up period, both for the MSD spike assay (97% survival probability at 200 days, 95% CI 95-99%) and the Roche Elecsys spike assay (95% survival probability at 200 days, 95% CI 93-97%). The best performing quantitative Roche Elecsys Spike assay showed no evidence of waning Spike antibody titers over the 200-day time course of the study. We have shown that compared to other assays evaluated, the Abbott-N assay fails to detect SARS-CoV-2 antibodies as time passes since infection. In contrast the Roche Elecsys Spike Assay and the MSD assay maintained a high sensitivity for the 200-day duration of the study. These limitations of the Abbott assay should be considered when quantifying the immune correlates of protection or the need for SARS-CoV-2 antibody therapy. The high levels of maintained detectable neutralizing spike antibody titers identified by the quantitative Roche Elecsys assay is encouraging and provides further evidence in support of long-lasting SARS-CoV-2 protection following natural infection.

摘要

敏感的血清学检测对于估计人群中暴露或感染 SARS-CoV-2 的比例、指导加强免疫接种以及选择抗 SARS-CoV-2 抗体治疗的患者至关重要。血清学检测的性能通常在感染后 14-21 天进行评估。这种方法没有考虑到时间对感染或暴露后检测性能的重要影响。我们使用 4 种广泛使用的检测方法(Meso Scale Discovery 的多重 SARS-CoV-2 核蛋白(N)、刺突(S)和受体结合域检测试剂盒、罗氏 Elecsys-Nucleoprotein(罗氏-N)和 Spike(罗氏-S)检测试剂盒以及 Abbott Nucleoprotein 检测试剂盒(雅培-N)),对作为 Co-STARs 研究(www.clinicaltrials.gov,NCT04380896)一部分的每月连续阳性样本进行平行血清学检测,这些样本在感染后长达 200 天内采集。我们的研究结果表明,时间自症状出现以来对不同检测方法的诊断敏感性有很大影响。使用时间事件分析,我们发现,与罗氏 Elecsys 核蛋白检测试剂盒的良好性能相比,雅培核蛋白检测试剂盒在 175 天后(中位生存时间 95%CI 168-185 天)有 50%的可能性得出阴性结果,而罗氏 Elecsys 核蛋白检测试剂盒在 200 天的生存概率为 93%(95%CI 88-97%)。针对刺突蛋白的检测方法在随访期间的下降幅度较小,包括 MSD 刺突检测试剂盒(200 天的生存概率为 97%,95%CI 95-99%)和罗氏 Elecsys 刺突检测试剂盒(200 天的生存概率为 95%,95%CI 93-97%)。表现最好的定量罗氏 Elecsys Spike 检测试剂盒在研究的 200 天时间内没有显示出 Spike 抗体滴度减弱的证据。我们已经表明,与评估的其他检测方法相比,雅培-N 检测试剂盒无法检测到感染后随着时间推移而产生的 SARS-CoV-2 抗体。相比之下,罗氏 Elecsys Spike 检测试剂盒和 MSD 检测试剂盒在研究的 200 天内保持了较高的敏感性。在定量 SARS-CoV-2 抗体治疗或量化保护的免疫相关性时,应考虑雅培检测试剂盒的这些局限性。定量罗氏 Elecsys 检测试剂盒检测到的高水平可检测到的中和 Spike 抗体滴度令人鼓舞,并进一步支持了自然感染后 SARS-CoV-2 持续保护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af18/9218130/f6b3902d990c/41598_2022_14351_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验