Jansen Mariëlle J A, Kuijf Hugo J, Dhara Ashis K, Weaver Nick A, Jan Biessels Geert, Strand Robin, Pluim Josien P W
University Medical Center Utrecht and Utrecht University, Image Sciences Institute, Utrecht, The Netherlands.
Uppsala University, Center for Image Analysis, Department of Information Technology, Uppsala, Sweden.
J Med Imaging (Bellingham). 2020 Nov;7(6):064003. doi: 10.1117/1.JMI.7.6.064003. Epub 2020 Dec 17.
Convolutional neural network (CNN) methods have been proposed to quantify lesions in medical imaging. Commonly, more than one imaging examination is available for a patient, but the serial information in these images often remains unused. CNN-based methods have the potential to extract valuable information from previously acquired imaging to better quantify lesions on current imaging of the same patient. A pretrained CNN can be updated with a patient's previously acquired imaging: patient-specific fine-tuning (FT). In this work, we studied the improvement in performance of lesion quantification methods on magnetic resonance images after FT compared to a pretrained base CNN. We applied the method to two different approaches: the detection of liver metastases and the segmentation of brain white matter hyperintensities (WMH). The patient-specific fine-tuned CNN has a better performance than the base CNN. For the liver metastases, the median true positive rate increases from 0.67 to 0.85. For the WMH segmentation, the mean Dice similarity coefficient increases from 0.82 to 0.87. We showed that patient-specific FT has the potential to improve the lesion quantification performance of general CNNs by exploiting a patient's previously acquired imaging.
卷积神经网络(CNN)方法已被用于医学成像中的病变量化。通常,患者可获得不止一项成像检查,但这些图像中的序列信息常常未被利用。基于CNN的方法有潜力从先前获取的成像中提取有价值的信息,以更好地量化同一患者当前成像中的病变。预训练的CNN可以用患者先前获取的成像进行更新:即患者特异性微调(FT)。在这项工作中,我们研究了与预训练的基础CNN相比,FT后磁共振图像上病变量化方法在性能上的提升。我们将该方法应用于两种不同的途径:肝转移瘤的检测和脑白质高信号(WMH)的分割。患者特异性微调的CNN比基础CNN具有更好的性能。对于肝转移瘤,真阳性率中位数从0.67提高到0.85。对于WMH分割,平均骰子相似系数从0.82提高到0.87。我们表明,患者特异性FT有潜力通过利用患者先前获取的成像来提高通用CNN的病变量化性能。