颈背根硬膜外电刺激可恢复瘫痪猴子的上肢自主控制能力。
Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys.
作者信息
Barra Beatrice, Conti Sara, Perich Matthew G, Zhuang Katie, Schiavone Giuseppe, Fallegger Florian, Galan Katia, James Nicholas D, Barraud Quentin, Delacombaz Maude, Kaeser Mélanie, Rouiller Eric M, Milekovic Tomislav, Lacour Stephanie, Bloch Jocelyne, Courtine Grégoire, Capogrosso Marco
机构信息
Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.
Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
出版信息
Nat Neurosci. 2022 Jul;25(7):924-934. doi: 10.1038/s41593-022-01106-5. Epub 2022 Jun 30.
Regaining arm control is a top priority for people with paralysis. Unfortunately, the complexity of the neural mechanisms underlying arm control has limited the effectiveness of neurotechnology approaches. Here, we exploited the neural function of surviving spinal circuits to restore voluntary arm and hand control in three monkeys with spinal cord injury, using spinal cord stimulation. Our neural interface leverages the functional organization of the dorsal roots to convey artificial excitation via electrical stimulation to relevant spinal segments at appropriate movement phases. Stimulation bursts targeting specific spinal segments produced sustained arm movements, enabling monkeys with arm paralysis to perform an unconstrained reach-and-grasp task. Stimulation specifically improved strength, task performances and movement quality. Electrophysiology suggested that residual descending inputs were necessary to produce coordinated movements. The efficacy and reliability of our approach hold realistic promises of clinical translation.
恢复手臂控制能力是瘫痪患者的首要任务。不幸的是,手臂控制背后神经机制的复杂性限制了神经技术方法的有效性。在此,我们利用存活的脊髓回路的神经功能,通过脊髓刺激,在三只脊髓损伤的猴子身上恢复了手臂和手部的自主控制。我们的神经接口利用背根的功能组织,在适当的运动阶段通过电刺激将人工激发传递到相关的脊髓节段。针对特定脊髓节段的刺激脉冲产生了持续的手臂运动,使手臂瘫痪的猴子能够执行无约束的抓握任务。刺激特别改善了力量、任务表现和运动质量。电生理学表明,残余的下行输入对于产生协调运动是必要的。我们方法的有效性和可靠性为临床转化带来了切实的希望。