Suppr超能文献

纳米级硫的治疗性递送以抑制番茄病害:体外成像与正交机制研究

Therapeutic Delivery of Nanoscale Sulfur to Suppress Disease in Tomatoes: In Vitro Imaging and Orthogonal Mechanistic Investigation.

作者信息

Wang Yi, Deng Chaoyi, Elmer Wade H, Dimkpa Christian O, Sharma Sudhir, Navarro Gilberto, Wang Zhengyang, LaReau Jacquelyn, Steven Blaire T, Wang Zhenyu, Zhao Lijuan, Li Chunqiang, Dhankher Om Parkash, Gardea-Torresdey Jorge L, Xing Baoshan, White Jason C

机构信息

Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States.

Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.

出版信息

ACS Nano. 2022 Jul 26;16(7):11204-11217. doi: 10.1021/acsnano.2c04073. Epub 2022 Jul 6.

Abstract

Nanoscale sulfur can be a multifunctional agricultural amendment to enhance crop nutrition and suppress disease. Pristine (nS) and stearic acid coated (cS) sulfur nanoparticles were added to soil planted with tomatoes () at 200 mg/L soil and infested with . Bulk sulfur, ionic sulfate, and healthy controls were included. Orthogonal end points were measured in two greenhouse experiments, including agronomic and photosynthetic parameters, disease severity/suppression, mechanistic biochemical and molecular end points including the time-dependent expression of 13 genes related to two S bioassimilation and pathogenesis-response, and metabolomic profiles. Disease reduced the plant biomass by up to 87%, but nS and cS amendment significantly reduced disease as determined by area-under-the-disease-progress curve by 54 and 56%, respectively. An increase S accumulation was evident, with size-specific translocation ratios suggesting different uptake mechanisms. In vivo two-photon microscopy and time-dependent gene expression revealed a nanoscale-specific elemental S bioassimilation pathway within the plant that is separate from traditional sulfate accumulation. These findings correlate well with time-dependent metabolomic profiling, which exhibited increased disease resistance and plant immunity related metabolites only with nanoscale treatment. The linked gene expression and metabolomics data demonstrate a time-sensitive physiological window where nanoscale stimulation of plant immunity will be effective. These findings provide mechanistic understandings of nonmetal nanomaterial-based suppression of plant disease and significantly advance sustainable nanoenabled agricultural strategies to increase food production.

摘要

纳米级硫可以作为一种多功能农业改良剂,增强作物营养并抑制病害。将原始的(nS)和硬脂酸包覆的(cS)硫纳米颗粒以200 mg/L的浓度添加到种植番茄的土壤中,并接种病原体。设置了粗硫、离子硫酸盐和健康对照。在两个温室实验中测量了正交终点,包括农艺和光合参数、病害严重程度/抑制情况、机制生化和分子终点,包括与两种硫生物同化和发病反应相关的13个基因的时间依赖性表达,以及代谢组学图谱。病害使植物生物量减少高达87%,但nS和cS改良剂通过病害进展曲线下面积测定,分别显著降低病害54%和56%。硫积累明显增加,特定尺寸的转运率表明存在不同的吸收机制。体内双光子显微镜和时间依赖性基因表达揭示了植物体内一种与传统硫酸盐积累不同的纳米级特定元素硫生物同化途径。这些发现与时间依赖性代谢组学分析结果高度相关,后者仅在纳米级处理时表现出抗病性和植物免疫相关代谢物增加。相关的基因表达和代谢组学数据证明了一个对时间敏感的生理窗口,在此窗口内纳米级刺激植物免疫将是有效的。这些发现提供了基于非金属纳米材料抑制植物病害的机制理解,并显著推进了可持续的纳米农业战略以增加粮食产量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验