Suppr超能文献

自推进纳米马达与生物膜微环境激活的一氧化氮释放协同作用,加速细菌感染的糖尿病创面愈合。

Self-Propelling Nanomotors Integrated with Biofilm Microenvironment-Activated NO Release to Accelerate Healing of Bacteria-Infected Diabetic Wounds.

机构信息

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China.

出版信息

Adv Healthc Mater. 2022 Oct;11(19):e2201323. doi: 10.1002/adhm.202201323. Epub 2022 Jul 27.

Abstract

Diabetic foot ulcer (DFU) treatment is challenged by persistent bacterial infection and hyperglycemia-caused vascular dysplasia. Herein, self-propelled nanomotors are designed to achieve biofilm microenvironment (BME)-activated multistage release of NO for effective sterilization and subsequent angiogenesis promotion. CaO nanoparticles (NPs) are capped with PDA layers, followed by complexation with Fe and surface grafting of cysteine-NO to obtain Janus Ca@PDA -CNO NPs. In response to low pH in BME, the decomposition of CaO cores generates O from one side of Janus NPs to propel biofilm penetration, and the released H O and Fe produce •OH through Fenton reaction. The concurrent glutathione-triggered release of NO can be converted into reactive nitrogen species, which exhibit significantly higher bactericidal efficacy than those with only generation of •OH or NO. The slow release of NO for an extended time period promotes endothelial cell proliferation and migration. On Staphylococcus aureus-infected skin wounds of diabetic mice, NP treatment eliminates bacterial infections and significantly elevates blood vessel densities, leading to full wound recovery and regeneration of arranged collagen fibers and skin accessories. Thus, the self-propelling and multistage release of NO provide a feasible strategy to combat biofilm infection without using any antibiotics and accelerate angiogenesis and wound healing for DFU treatment.

摘要

糖尿病足溃疡 (DFU) 的治疗受到持续细菌感染和高血糖引起的血管发育不良的挑战。在此,设计了自推进纳米马达以实现生物膜微环境 (BME) 激活的 NO 多阶段释放,从而有效杀菌并随后促进血管生成。用 PDA 层覆盖 CaO 纳米颗粒 (NPs),然后与 Fe 络合并在表面接枝半胱氨酸-NO 以获得 Janus Ca@PDA-CNO NPs。响应 BME 中的低 pH,Janus NPs 一侧的 CaO 核分解生成 O 以推动生物膜穿透,释放的 H 2 O 和 Fe 通过芬顿反应产生 •OH。同时,谷胱甘肽触发的 NO 释放可转化为活性氮物种,其杀菌效果明显高于仅生成 •OH 或 NO 的物种。NO 的缓慢释放持续时间延长可促进内皮细胞的增殖和迁移。在糖尿病小鼠金黄色葡萄球菌感染的皮肤伤口上,NP 治疗消除了细菌感染,并显著增加了血管密度,导致完全愈合和再生排列整齐的胶原纤维和皮肤附件。因此,NO 的自推进和多阶段释放为对抗生物膜感染提供了一种可行的策略,而无需使用任何抗生素,并加速糖尿病足溃疡的血管生成和伤口愈合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验