文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

大规模平行池筛选揭示了纳米颗粒递送的基因组决定因素。

Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery.

机构信息

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

Science. 2022 Jul 22;377(6604):eabm5551. doi: 10.1126/science.abm5551.


DOI:10.1126/science.abm5551
PMID:35862544
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10249039/
Abstract

To accelerate the translation of cancer nanomedicine, we used an integrated genomic approach to improve our understanding of the cellular processes that govern nanoparticle trafficking. We developed a massively parallel screen that leverages barcoded, pooled cancer cell lines annotated with multiomic data to investigate cell association patterns across a nanoparticle library spanning a range of formulations with clinical potential. We identified both materials properties and cell-intrinsic features that mediate nanoparticle-cell association. Using machine learning algorithms, we constructed genomic nanoparticle trafficking networks and identified nanoparticle-specific biomarkers. We validated one such biomarker: gene expression of , which inversely predicts lipid-based nanoparticle uptake in vitro and in vivo. Our work establishes the power of integrated screens for nanoparticle delivery and enables the identification and utilization of biomarkers to rationally design nanoformulations.

摘要

为了加速癌症纳米医学的转化,我们采用了一种综合基因组方法,以加深我们对控制纳米颗粒转运的细胞过程的理解。我们开发了一种大规模平行筛选方法,利用带有多组学数据注释的条形码、汇集的癌细胞系,来研究跨越具有临床潜力的一系列制剂的纳米颗粒库的细胞关联模式。我们确定了介导纳米颗粒-细胞关联的材料特性和细胞内在特征。我们使用机器学习算法构建了基因组纳米颗粒转运网络,并鉴定了纳米颗粒特异性生物标志物。我们验证了其中一个生物标志物:基因表达水平,该标志物可反向预测体外和体内基于脂质的纳米颗粒摄取。我们的工作证明了综合筛选在纳米颗粒递送上的强大功能,并使鉴定和利用生物标志物来合理设计纳米制剂成为可能。

相似文献

[1]
Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery.

Science. 2022-7-22

[2]
One step closer to cancer nanomedicine.

Science. 2022-7-22

[3]
Factors Influencing the Delivery Efficiency of Cancer Nanomedicines.

AAPS PharmSciTech. 2020-5-14

[4]
Recent Patents on Nanoparticles and Nanoformulations for Cancer Therapy.

Recent Pat Drug Deliv Formul. 2016

[5]
Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors.

J Control Release. 2015-12-10

[6]
Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine.

JACS Au. 2021-11-23

[7]
Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine.

Adv Drug Deliv Rev. 2019-4-22

[8]
Targeting liposomes toward novel pediatric anticancer therapeutics.

Pediatr Res. 2010-5

[9]
Nanoparticle-Delivered Chemotherapy: Old Drugs in New Packages.

Oncology (Williston Park). 2017-3-15

[10]
Liposomes and inorganic nanoparticles for drug delivery and cancer imaging.

Ther Deliv. 2012-5

引用本文的文献

[1]
Nanoparticle-Based Delivery Strategies for Combating Drug Resistance in Cancer Therapeutics.

Cancers (Basel). 2025-8-11

[2]
Machine Learning and Artificial Intelligence in Nanomedicine.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025

[3]
Surface avidity of anionic polypeptide coatings target nanoparticles to cancer-associated amino acid transporters.

bioRxiv. 2025-7-31

[4]
Advancing engineering design strategies for targeted cancer nanomedicine.

Nat Rev Cancer. 2025-8-1

[5]
Effect of cholesterol on distribution, cell uptake, and protein corona of lipid microspheres at sites of cardiovascular inflammatory injury.

J Pharm Anal. 2025-7

[6]
Intersection of ferroptosis and nanomaterials brings benefits to breast cancer.

Cell Biol Toxicol. 2025-7-22

[7]
Machine Learning-Enhanced Nanoparticle Design for Precision Cancer Drug Delivery.

Adv Sci (Weinh). 2025-8

[8]
Developments in nanotechnology approaches for the treatment of solid tumors.

Exp Hematol Oncol. 2025-5-19

[9]
[Research advances of liposomes and exosomes in drug delivery and biomarker screening].

Se Pu. 2025-5

[10]
Engineering of extracellular vesicles for efficient intracellular delivery of multimodal therapeutics including genome editors.

Nat Commun. 2025-4-29

本文引用的文献

[1]
Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine.

JACS Au. 2021-11-23

[2]
Lipid nanoparticles for mRNA delivery.

Nat Rev Mater. 2021

[3]
Lysosomal SLC46A3 modulates hepatic cytosolic copper homeostasis.

Nat Commun. 2021-1-12

[4]
A metastasis map of human cancer cell lines.

Nature. 2020-12

[5]
The Gene Ontology resource: enriching a GOld mine.

Nucleic Acids Res. 2021-1-8

[6]
Engineering precision nanoparticles for drug delivery.

Nat Rev Drug Discov. 2021-2

[7]
MFSD12 mediates the import of cysteine into melanosomes and lysosomes.

Nature. 2020-12

[8]
A framework for designing delivery systems.

Nat Nanotechnol. 2020-10

[9]
Electrostatic Conjugation of Nanoparticle Surfaces with Functional Peptide Motifs.

Bioconjug Chem. 2020-9-16

[10]
Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling.

Nat Cancer. 2020-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索