Suppr超能文献

基于深度学习的仅重要权重迁移学习方法用于COVID-19 CT扫描分类。

Deep learning-based important weights-only transfer learning approach for COVID-19 CT-scan classification.

作者信息

Choudhary Tejalal, Gujar Shubham, Goswami Anurag, Mishra Vipul, Badal Tapas

机构信息

Department of Computer Science Engineering, Bennett University, Greater Noida, 201310 Uttar Pradesh India.

Department of Electronics & Telecommunications, Vishwakarma Institute of Information Technology, Pune, 411048 Maharashtra India.

出版信息

Appl Intell (Dordr). 2023;53(6):7201-7215. doi: 10.1007/s10489-022-03893-7. Epub 2022 Jul 18.

Abstract

COVID-19 has become a pandemic for the entire world, and it has significantly affected the world economy. The importance of early detection and treatment of the infection cannot be overstated. The traditional diagnosis techniques take more time in detecting the infection. Although, numerous deep learning-based automated solutions have recently been developed in this regard, nevertheless, the limitation of computational and battery power in resource-constrained devices makes it difficult to deploy trained models for real-time inference. In this paper, to detect the presence of COVID-19 in CT-scan images, an important weights-only transfer learning method has been proposed for devices with limited runt-time resources. In the proposed method, the pre-trained models are made point-of-care devices friendly by pruning less important weight parameters of the model. The experiments were performed on two popular VGG16 and ResNet34 models and the empirical results showed that pruned ResNet34 model achieved 95.47% accuracy, 0.9216 sensitivity, 0.9567 F-score, and 0.9942 specificity with 41.96% fewer FLOPs and 20.64% fewer weight parameters on the SARS-CoV-2 CT-scan dataset. The results of our experiments showed that the proposed method significantly reduces the run-time resource requirements of the computationally intensive models and makes them ready to be utilized on the point-of-care devices.

摘要

新冠病毒病已成为全球大流行病,对世界经济产生了重大影响。感染的早期检测和治疗的重要性再怎么强调也不为过。传统的诊断技术在检测感染时需要更多时间。尽管最近在这方面已经开发了许多基于深度学习的自动化解决方案,然而,资源受限设备中的计算和电池电量限制使得难以部署经过训练的模型进行实时推理。在本文中,为了在CT扫描图像中检测新冠病毒病的存在,针对运行时资源有限的设备提出了一种重要的仅权重迁移学习方法。在所提出的方法中,通过修剪模型中不太重要的权重参数,使预训练模型对即时护理设备友好。在两个流行的VGG16和ResNet34模型上进行了实验,实证结果表明,在SARS-CoV-2 CT扫描数据集上,修剪后的ResNet34模型实现了95.47%的准确率、0.9216的灵敏度、0.9567的F值和0.9942的特异性,同时浮点运算次数减少41.96%,权重参数减少20.64%。我们的实验结果表明,所提出的方法显著降低了计算密集型模型的运行时资源需求,并使其能够在即时护理设备上得到应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ab/9289654/5aa60b0b599e/10489_2022_3893_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验