Jiménez Gaona Yuliana, Castillo Malla Darwin, Vega Crespo Bernardo, Vicuña María José, Neira Vivian Alejandra, Dávila Santiago, Verhoeven Veronique
Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja CP1101608, Ecuador.
Instituto de Instrumentacion para la Imagen Molecular I3M, Universitat Politécnica de Valencia, E-46022 Valencia, Spain.
Diagnostics (Basel). 2022 Jul 12;12(7):1694. doi: 10.3390/diagnostics12071694.
Colposcopy imaging is widely used to diagnose, treat and follow-up on premalignant and malignant lesions in the vulva, vagina, and cervix. Thus, deep learning algorithms are being used widely in cervical cancer diagnosis tools. In this study, we developed and preliminarily validated a model based on the Unet network plus SVM to classify cervical lesions on colposcopy images. Two sets of images were used: the Intel & Mobile ODT Cervical Cancer Screening public dataset, and a private dataset from a public hospital in Ecuador during a routine colposcopy, after the application of acetic acid and lugol. For the latter, the corresponding clinical information was collected, specifically cytology on the PAP smear and the screening of human papillomavirus testing, prior to colposcopy. The lesions of the cervix or regions of interest were segmented and classified by the Unet and the SVM model, respectively. The CAD system was evaluated for the ability to predict the risk of cervical cancer. The lesion segmentation metric results indicate a DICE of 50%, a precision of 65%, and an accuracy of 80%. The classification results' sensitivity, specificity, and accuracy were 70%, 48.8%, and 58%, respectively. Randomly, 20 images were selected and sent to 13 expert colposcopists for a statistical comparison between visual evaluation experts and the CAD tool (-value of 0.597). The CAD system needs to improve but could be acceptable in an environment where women have limited access to clinicians for the diagnosis, follow-up, and treatment of cervical cancer; better performance is possible through the exploration of other deep learning methods with larger datasets.
阴道镜成像广泛应用于外阴、阴道和宫颈的癌前病变和恶性病变的诊断、治疗及随访。因此,深度学习算法在宫颈癌诊断工具中得到了广泛应用。在本研究中,我们开发并初步验证了一种基于Unet网络加支持向量机(SVM)的模型,用于对阴道镜图像上的宫颈病变进行分类。使用了两组图像:英特尔和移动ODT宫颈癌筛查公共数据集,以及厄瓜多尔一家公立医院在常规阴道镜检查中,应用醋酸和卢戈氏碘液后获取的一个私人数据集。对于后者,在阴道镜检查前收集了相应的临床信息,特别是巴氏涂片的细胞学检查和人乳头瘤病毒检测筛查结果。宫颈病变或感兴趣区域分别由Unet和SVM模型进行分割和分类。对计算机辅助诊断(CAD)系统预测宫颈癌风险的能力进行了评估。病变分割指标结果显示,DICE系数为50%,精度为65%,准确率为80%。分类结果的敏感性、特异性和准确率分别为70%、48.8%和58%。随机选择20张图像,发送给13位阴道镜专家,以对视觉评估专家和CAD工具进行统计比较(P值为0.597)。CAD系统需要改进,但在女性宫颈癌诊断、随访和治疗获取临床医生资源有限的环境中可能是可以接受的;通过探索使用更大数据集的其他深度学习方法,有可能实现更好的性能。