Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n CP1101608, Loja, Ecuador.
Instituto de Instrumentación para la Imagen Molecular I3M, Universitat Politécnica de Valencia, 46022, Valencia, Spain.
Med Biol Eng Comput. 2024 Sep;62(9):2737-2756. doi: 10.1007/s11517-024-03084-1. Epub 2024 May 2.
Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named "BraNet" for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classification. This application operates on a client-server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader's agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts' accuracy, with DM classification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model.
移动健康应用程序广泛用于使用人工智能算法进行乳腺癌检测,为放射科医生提供第二意见并减少误诊。本研究旨在开发一个名为“BraNet”的开源移动应用程序,用于使用深度学习算法进行 2D 乳房成像分割和分类。在离线阶段,先前使用 SNGAN 模型进行合成图像生成,然后使用这些图像对 SAM 和 ResNet18 分割和分类模型进行预训练。在在线阶段,使用 react native 框架开发了 BraNet 应用程序,为乳房 X 线摄影 (DM) 和超声 (US) 乳房成像分类提供了模块化的深度学习管道。该应用程序采用客户端-服务器架构,使用 Python 为 iOS 和 Android 设备实现。然后,两名诊断放射科医生对总共 290 个原始 ROI 图像进行了阅读测试,以分配感知的乳房组织类型。使用 Kappa 系数评估读者的一致性。在训练 I(80.9%/76.9%)和训练 II(73.7%/72.3%)期间,BraNet App Mobil 在良性和恶性 US 图像(94.7%/93.6%)分类中的准确性最高,而在 DM 中则最高。信息与放射科专家的准确性形成对比,DM 分类为 29%,而对于两位读者,US 则为 70%,因为他们在 US ROI 分类方面的准确性高于 DM 图像。Kappa 值表示 DM 图像的一致性适中(0.4),而 US 图像的一致性适中(0.4),对于两位读者都是如此。这意味着,不仅训练深度学习算法所需的数据量很重要,而且还必须考虑异常的多样性,尤其是在乳房 X 线摄影数据中,其中存在几种 BI-RADS 类别(微钙化、结节、肿块、不对称和致密乳房),这可能会影响 API 准确性模型。
Med Biol Eng Comput. 2024-9
Comput Methods Programs Biomed. 2018-1-11
J Xray Sci Technol. 2019
Comput Methods Programs Biomed. 2022-6
Medicina (Kaunas). 2023-12-21
Jpn J Radiol. 2024-1
Diagnostics (Basel). 2023-6-13
Br J Radiol. 2023-10