文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

BraNet:一款基于深度学习算法的乳房影像分类移动应用程序。

BraNet: a mobil application for breast image classification based on deep learning algorithms.

机构信息

Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n CP1101608, Loja, Ecuador.

Instituto de Instrumentación para la Imagen Molecular I3M, Universitat Politécnica de Valencia, 46022, Valencia, Spain.

出版信息

Med Biol Eng Comput. 2024 Sep;62(9):2737-2756. doi: 10.1007/s11517-024-03084-1. Epub 2024 May 2.


DOI:10.1007/s11517-024-03084-1
PMID:38693328
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11330402/
Abstract

Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named "BraNet" for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classification. This application operates on a client-server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader's agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts' accuracy, with DM classification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model.

摘要

移动健康应用程序广泛用于使用人工智能算法进行乳腺癌检测,为放射科医生提供第二意见并减少误诊。本研究旨在开发一个名为“BraNet”的开源移动应用程序,用于使用深度学习算法进行 2D 乳房成像分割和分类。在离线阶段,先前使用 SNGAN 模型进行合成图像生成,然后使用这些图像对 SAM 和 ResNet18 分割和分类模型进行预训练。在在线阶段,使用 react native 框架开发了 BraNet 应用程序,为乳房 X 线摄影 (DM) 和超声 (US) 乳房成像分类提供了模块化的深度学习管道。该应用程序采用客户端-服务器架构,使用 Python 为 iOS 和 Android 设备实现。然后,两名诊断放射科医生对总共 290 个原始 ROI 图像进行了阅读测试,以分配感知的乳房组织类型。使用 Kappa 系数评估读者的一致性。在训练 I(80.9%/76.9%)和训练 II(73.7%/72.3%)期间,BraNet App Mobil 在良性和恶性 US 图像(94.7%/93.6%)分类中的准确性最高,而在 DM 中则最高。信息与放射科专家的准确性形成对比,DM 分类为 29%,而对于两位读者,US 则为 70%,因为他们在 US ROI 分类方面的准确性高于 DM 图像。Kappa 值表示 DM 图像的一致性适中(0.4),而 US 图像的一致性适中(0.4),对于两位读者都是如此。这意味着,不仅训练深度学习算法所需的数据量很重要,而且还必须考虑异常的多样性,尤其是在乳房 X 线摄影数据中,其中存在几种 BI-RADS 类别(微钙化、结节、肿块、不对称和致密乳房),这可能会影响 API 准确性模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/4e02dd55d8fd/11517_2024_3084_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/b8dcbd613d53/11517_2024_3084_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/ae5467ca79a8/11517_2024_3084_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/44fa93ba626a/11517_2024_3084_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/4eb0d4020bf6/11517_2024_3084_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/ab40b3584867/11517_2024_3084_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/4e02dd55d8fd/11517_2024_3084_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/b8dcbd613d53/11517_2024_3084_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/ae5467ca79a8/11517_2024_3084_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/44fa93ba626a/11517_2024_3084_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/4eb0d4020bf6/11517_2024_3084_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/ab40b3584867/11517_2024_3084_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e507/11330402/4e02dd55d8fd/11517_2024_3084_Fig6_HTML.jpg

相似文献

[1]
BraNet: a mobil application for breast image classification based on deep learning algorithms.

Med Biol Eng Comput. 2024-9

[2]
A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening.

Eur Radiol. 2021-8

[3]
Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks.

Comput Methods Programs Biomed. 2018-1-11

[4]
Automated BI-RADS classification of lesions using pyramid triple deep feature generator technique on breast ultrasound images.

Med Eng Phys. 2022-10

[5]
New one-step model of breast tumor locating based on deep learning.

J Xray Sci Technol. 2019

[6]
A deep learning framework to classify breast density with noisy labels regularization.

Comput Methods Programs Biomed. 2022-6

[7]
Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making.

Eur Radiol. 2019-3-29

[8]
Deep learning applied to breast imaging classification and segmentation with human expert intervention.

J Ultrasound. 2022-9

[9]
Deep learning combining mammography and ultrasound images to predict the malignancy of BI-RADS US 4A lesions in women with dense breasts: a diagnostic study.

Int J Surg. 2024-5-1

[10]
Digital breast tomosynthesis versus digital mammography: integration of image modalities enhances deep learning-based breast mass classification.

Eur Radiol. 2019-11-5

本文引用的文献

[1]
Clinical Utility of Breast Ultrasound Images Synthesized by a Generative Adversarial Network.

Medicina (Kaunas). 2023-12-21

[2]
Ethical Considerations for Artificial Intelligence in Medical Imaging: Data Collection, Development, and Evaluation.

J Nucl Med. 2023-12-1

[3]
Ethical Considerations for Artificial Intelligence in Medical Imaging: Deployment and Governance.

J Nucl Med. 2023-10

[4]
Fairness of artificial intelligence in healthcare: review and recommendations.

Jpn J Radiol. 2024-1

[5]
Deep learning classification of deep ultraviolet fluorescence images toward intra-operative margin assessment in breast cancer.

Front Oncol. 2023-6-16

[6]
Artificial Intelligence Applications in Breast Imaging: Current Status and Future Directions.

Diagnostics (Basel). 2023-6-13

[7]
Deep Learning in Different Ultrasound Methods for Breast Cancer, from Diagnosis to Prognosis: Current Trends, Challenges, and an Analysis.

Cancers (Basel). 2023-6-10

[8]
AI and machine learning ethics, law, diversity, and global impact.

Br J Radiol. 2023-10

[9]
VinDr-Mammo: A large-scale benchmark dataset for computer-aided diagnosis in full-field digital mammography.

Sci Data. 2023-5-12

[10]
The implementation of NILS: A web-based artificial neural network decision support tool for noninvasive lymph node staging in breast cancer.

Front Oncol. 2023-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索