Suppr超能文献

新型双金属银镍纳米颗粒与氟康唑联合抗……的效应

Combination Effect of Novel Bimetallic Ag-Ni Nanoparticles with Fluconazole against .

作者信息

Kamli Majid Rasool, Alzahrani Elham A, Albukhari Soha M, Ahmad Aijaz, Sabir Jamal S M, Malik Maqsood Ahmad

机构信息

Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.

Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.

出版信息

J Fungi (Basel). 2022 Jul 14;8(7):733. doi: 10.3390/jof8070733.

Abstract

The increasing frequency of antifungal drug resistance among pathogenic yeast "" has posed an immense global threat to the public healthcare sector. The most notable species of causing most fungal infections is Furthermore, recent research has revealed that transition and noble metal combinations can have synergistic antimicrobial effects. Therefore, a one-pot seedless biogenic synthesis of Ag-Ni bimetallic nanoparticles (Ag-Ni NPs) using aqueous leaf extract is described. Various techniques, such as UV-vis, FTIR, XRD, SEM, EDX, and TGA, were used to validate the production of Ag-Ni NPs. The antifungal susceptibility of Ag-Ni NPs alone and in combination with fluconazole (FLZ) was tested against FLZ-resistant isolate. Furthermore, the impacts of these NPs on membrane integrity, drug efflux pumps, and biofilms formation were evaluated. The MIC (1.56 μg/mL) and MFC (3.12 μg/mL) results indicated potent antifungal activity of Ag-Ni NPs against FLZ-resistant . Upon combination, synergistic interaction was observed between Ag-Ni NPs and FLZ against 5112 with a fractional inhibitory concentration index (FICI) value of 0.31. In-depth studies revealed that Ag-Ni NPs at higher concentrations (3.12 μg/mL) have anti-biofilm properties and disrupt membrane integrity, as demonstrated by scanning electron microscopy results. In comparison, morphological transition was halted at lower concentrations (0.78 μg/mL). From the results of efflux pump assay using rhodamine 6G (R6G), it was evident that Ag-Ni NPs blocks the efflux pumps in the FLZ-resistant 5112. Targeting biofilms and efflux pumps using novel drugs will be an alternate approach for combatting the threat of multi-drug resistant (MDR) stains of . Therefore, this study supports the usage of Ag-Ni NPs to avert infections caused by drug resistant strains of .

摘要

致病性酵母中抗真菌药物耐药性频率的增加,对全球公共卫生保健部门构成了巨大威胁。引起大多数真菌感染的最显著菌种是 。此外,最近的研究表明,过渡金属和贵金属组合可具有协同抗菌作用。因此,本文描述了一种使用 水提叶提取物的无籽一锅法生物合成Ag-Ni双金属纳米颗粒(Ag-Ni NPs)。采用紫外可见光谱、傅里叶变换红外光谱、X射线衍射、扫描电子显微镜、能谱和热重分析等多种技术来验证Ag-Ni NPs的生成。测试了单独的Ag-Ni NPs以及与氟康唑(FLZ)联合使用时对耐FLZ的 分离株的抗真菌敏感性。此外,还评估了这些纳米颗粒对膜完整性、药物外排泵和生物膜形成的影响。最低抑菌浓度(MIC,1.56 μg/mL)和最低杀菌浓度(MFC,3.12 μg/mL)结果表明,Ag-Ni NPs对耐FLZ的 具有强大的抗真菌活性。联合使用时,观察到Ag-Ni NPs与FLZ对 5112具有协同相互作用,部分抑制浓度指数(FICI)值为0.31。深入研究表明,扫描电子显微镜结果显示,较高浓度(3.12 μg/mL)的Ag-Ni NPs具有抗生物膜特性并破坏膜完整性。相比之下,较低浓度(0.78 μg/mL)时形态转变停止。从使用罗丹明6G(R6G)的外排泵测定结果来看,很明显Ag-Ni NPs可阻断耐FLZ的 5112中的外排泵。使用新型药物靶向生物膜和外排泵将是对抗 多重耐药(MDR)菌株威胁一种替代方法。因此,本研究支持使用Ag-Ni NPs来避免由耐药菌株引起的感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2e6/9316949/730f6322bd55/jof-08-00733-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验